Draft NIST Special Publication 800-56B Recommendation for Pair-Wise

December, 2008 Key Establishment Schemes:
Using Integer Factorization
Cryptography
N lsr Elaine Barker, Lily Chen, Andrew
National Institute of Regenscheid, and Miles Smid

Standards and Technology

COMPUTER SECURITY

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Abstract

This Recommendation specifies key establishment schemes using integer factorization
cryptography, based on ANS X9.44, Key Establishment using Integer Factorization
Cryptography, which was developed by the Accredited Standards Committee (ASC) X9, Inc.

KEY WORDS: assurances; integer factorization cryptography; key agreement; key confirmation;
key derivation; key establishment; key management; key recovery; key transport.

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions by Rich Davis from the National Security Agency concerning the many
security issues associated with this Recommendation. NIST also thanks the many contributions
by the public and private sectors whose thoughtful and constructive comments improved the
quality and usefulness of this publication.

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information Security
Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum requirements,
for providing adequate information security for all agency operations and assets, but such
standards and guidelines shall not apply to national security systems. This guideline is consistent
with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section
8b(3), Securing Agency Information Systems, as analyzed in A-130, Appendix IV: Analysis of
Key Sections. Supplemental information is provided in A-130, Appendix III.

This Recommendation has been prepared for use by federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution
would be appreciated by NIST.)

Nothing in this document should be taken to contradict standards and guidelines made
mandatory and binding on federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official.

Conformance testing for implementations of key establishment schemes, as specified in this
Recommendation, will be conducted within the framework of the Cryptographic Module
Validation Program (CMVP), a joint effort of NIST and the Communications Security
Establishment of the Government of Canada. An implementation of a key establishment scheme
must adhere to the requirements in this Recommendation in order to be validated under the
CMVP. The requirements of this Recommendation are indicated by the word “shall.”

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008

Table of Contents
I INErOAUCTIONcitiiiiiieiiie ettt et 10
2 Scope aNd PUIPOSE ...cueviiieiiie ettt e e erae e e e e eeree s 10
3 Definitions, Symbols and Abbreviations............ccceeeeveeerieeniieiiieeie e 11
3.1 DEEINITIONS. .. utieiieeitieiie ettt ettt ettt et et e et e et e et e e bt e eabe e bt e eabeesateenbeeseeeaneas 11
3.2 Symbols and ADBreviationscoceevuerieriiiiinienieie et 17
4 Key Establishment Schemes OVerviewcocceevievienieniieeniienienieeieeeeeene 23
4.1 Key Establishment Preparations by an OWNeT..........cceevverierienieniienienieiieneeseeieeeees 24
4.2 Key AGreement PrOCESScccuiiiiiiiiiiiieeiieeeitte ettt ettt sttt s 25
4.3 IFC-based Key Transport PrOCESSccocuiiiuieiiiiiiiiiiiiieeieeee et 28
5 Cryptographic EISMENTScccouiiiiiiiiiiieiieeie ettt e en 30
5.1 Cryptographic Hash FUNCHIONScccociiiiiiiiiiiiiiiiiiciiceccecceceee e 30
5.2 Message Authentication Code (MAC) Algorithm..........coceeviriiniininiiniiiniiicnicneens 30
5.2.1 MacTag COMPULALION ...cc.uveeeiiieeiieeeiieeeieeeeieeesteeesteeessaeeeeaeeeseeessaeesseeessseens 30
5.2.2 MacTag CRECKING........c.cooiieiieciieeiieete ettt et e aeesaeebeessaeesseessseensees 31
5.2.3 Implementation Validation MeSSagecccuevcvieriiriiieniieiiecieeieeeie e 31
5.3 Random Bit GENEIAtIONccueeiiriiiriiiiiiieniteie ettt ettt sttt nae e 31
5.4 Prime NUMDET GENETATOLSoccuvieriiiiiieitieeieesite ettt etee st e et e siteebee st e ebeesateebeasnseeneeas 31
5.5 Primality Testing MethOds.........coouiiiiiiiiiiiiiii e 32
5.0 INOIICES. ..ttt ettt ettt e ettt e bt e e bt e ettt e sttt e sab e e e sabeeeeabeeenaneee e 32
5.7 Symmetric Key-Wrapping AlGOrithms...........cccooviriierieiiieiieeiieeecreeee e 32
5.8 Mask Generation Function (MGE)cccooiiiiiiiiiiiiicceeeeee e 33
5.9 Key Derivation Functions for Key Establishment Schemes............cc.ccoevveveiieninnnnnen. 34
5.9.1 Concatenation Key Derivation Function (Approved Alternative 1).................. 34
5.9.2 ASN.1 Key Derivation Function (Approved Alternative 2).........cccccveeevveennenn. 37
6 RSA KEY PalTSeeiiiiiiie ettt et e e st e e e es 39

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

6.1
6.2

6.3

Using Integer Factorization Cryptography

December, 2008
General REQUITEMENTS.oiiviiiiiiieeciie e eeee ettt e eete e et eeeaeeetaeeeeaeesnaeesnneeeennes 39
Criteria for RSA Key Pairs for Key Establishmentcccccooeiiniiiiiieniiieniecieeeee. 40
6.2.1 Definition of @ Key Pair........ccccciiiiiiiiiiiiieiec e 40
0.2.2 FOTMALS ..eonviiiiiiiieiieeeie ettt ettt ettt et et e nbe e e es 42
6.2.3 Parameter Length Setscocooviiiiiiiiiiiiicee e 42
RSA Key Pair GENETATOTScccuviieiiieeiiieeiie ettt eetee et e e eeseveesaaeesraeeseseeesnseeennnas 43

6.3.1 RSAKPGI1 Family: RSA Key Pair Generation with a Fixed Public Exponent. 43

6.3.2 RSAKPG2 Family: RSA key pair generation with a random public exponent. 46

6.4 AsSSUrances Of Validitycocueeiieriiiiiieiecieee ettt e 49
6.4.1 Assurance of Key Pair Validityccccoooiiiiiiiiiiiiiieeeeeee e, 49
6.4.2 Recipient Assurances of Public Key Validity.........cocoveriininiiniinincnicnene. 55
6.5 Assurances of Private Key POSSESSION.......c..ccccuiiiriiieiiie et 56
6.5.1 Owner Assurance of Private Key PoSsessionccccceevveeeviieinieeniieeniieeenen, 57
6.5.2 Recipient Assurance of Owner’s Possession of a Private Keycccocveneee. 57
6.6 KeY CONTITMALIONeeiiiiiieiiiieiieciie ettt ettt e e te e st e esbeesabeensaessaeenseensneenseas 59
6.6.1 Unilateral Key Confirmation for Key Establishment Schemes............c...c........ 61
6.6.2 Bilateral Key Confirmation for Key Establishment Schemescccc.c..... 62
6.7 AUTRENTICATIONeitiiiiiiiie ettt ettt et e bt e e s bt e e b e aeeeneeas 62
7 TFC Primitives and OPerationsccccuveeeiiuiieeriieeeeeieeeesieeeeeveeeeireeeeseveeeeeneees 63
7.1 Encryption and Decryption Primitives..........cccovouieiiiiiienieiiiesieeteee e 63
T LD RSAEP ..ttt ettt e ne e eneas 63
T 12 RSADP...eeeeee ettt ettt e neas 63
7.2 Encryption and Decryption OPErationsccceeeeveeruieeieenieriieenieereeseesseesneesseenenes 64
7.2.1 RSA Secret Value Encapsulation (RSASVE)......ccccooviiiiiniiiniiiieeiieieeieeee, 64
7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)................. 67

7.2.3 RSA-based Key-Encapsulation Mechanism with a Key-Wrapping Scheme
(RSA-KEM-KWS) ettt 74
8 Key Agreement SChemMES.........coocviiiiiiiicciie e 79

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008

8.1 Common Components for Key AGreementcccccvveevvieeiiieeiieeeiiee e 80
8.2 The KAST FAMIl ...ccciieiiiiiiiiieieeieeee ettt ettt et e et saaeebeessaeensaens 80
8.2.1 KASI Family PrerequiSites.......cceciiririiiienieeiieriieeieeiteeee et eeeeveeseeeeeesane e 81

8.2.2 KAST-DASIC ..euueentieiieiiieieete ettt ettt sttt sttt 81

8.2.3 KASI Key Confirmationcceevuerierierieniinieniineeieneesieeie et 83

8.2.4 KASI Security PrOPerti€sccecuiieeiieeiiieeciieeeiiee ettt eieeeeveeesveeesveeesraeeeaeee e 85

8.3 KAS2 FaMILY ..ottt et 86
8.3.1 KAS2 Family PrerequiSites.......cccevvieriieiiienieeiieiieeieeiie e eieesveeveesveeaeesaneens 87

8.3.2 KASZ2-DASIC ..ttt ettt 88

8.3.3 KAS2 Key Confirmationcccueecuierieiiiieniieeiieriie ettt et siee s 90

8.3.4 KAS2 Security ProPerti€sccoeviiiiiriieiiieiie ettt sttt s 95

9 IFC based Key Transport SChemes..........ccccvevveeriieeciieiiieeiieeie e 96
0.1 Additional INPUL.......eoiiiiiiiiiieiiecie ettt ettt ettt e b e sabeebeeenseeneeas 97
9.2 KTS-OAEP Family: Key Transport Using RSA-OAEPccccooviviniiiiiiiiiniiicne 97
9.2.1 KTS-OAEP Family PrerequiSitesc.cceevurierureeriieeiiieeiieeeieeeereeesveeesvee e 98

9.2.2 COMMON COMPONENLES ..eeeeruerrireerurireeeriiieeeeasirteeeaaareeesssseeeeesssreeesssseeesssssseessnnns 99

0.2.3 KT S-OAEP-DASIC.....ccouiiiieiieiieieeie sttt st be e 99

9.2.4 KTS-OAEP Key Confirmationccceeeuieeieeniienieeniienieerieeeieeieesreenieesneens 100

9.2.5 KTS-OAEP Security Properties........ccocieruieriieniieniieiieeieeiee e eieesreenieesveens 101

9.3 KTS-KEM-KWS Family: Key Transport using RSA-KEM-KWS ... 102
9.3.1 KTS-KEM-KWS Family Prerequisites........cccccveervuieerieeeiiieeiieeeieeeeeesveeenns 103

9.3.2 Common Components of the KTS-KEM-KWS Schemes..........ccccceeuvreenenn. 104

0.3.3 KTS-KEM-KWS-DaSICccueeiiiiiriieiieieniiesieeie ettt s 104

9.3.4 KTS-KEM-KWS Key Confirmationccceceerieeiiienieeniienieeneesieeniee e 105

9.3.5 KTS-KEM-KWS Security Propertiesccooeveereriiineenenieneeienieseeeennens 106

1O K@Y RECOVETY....viiiiiiiiiiee ettt ettt e e e e e e e e e 107
11.Implementation Validationccueeeeiiiieniiiieeiie et 108

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008
Appendix A: Summary of Differences between this Recommendation and ANS
X9.44 (INFOrMAtIVE)eeiiiiiiiiiiiieeiee ettt 110
Appendix B: Data Conversions (NOIMAtIVe).........ccccveeeriuieeeeiiieeeeieeeerieeeeiveee e 112
B.1 Integer-to-Byte String (I12BS) Conversion..........ccceeecueeerieeeniiieeniieeniee e eeeee e 112
B.2 Byte String to Integer (BS2I) CONVErSioncceeevvieriieeiiieeeiieesiieeeieeeeieeeeiee e 112
Appendix C: Prime Factor Recovery (NOormative).........cccvveeeveeeeciveeenciiee e, 113
Appendix D: References (Informative)ccccuveeeeiieiiciiieciieeeceeeeeee e, 115

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008

Figures

Figure 1: Owner Key Establishment Preparations...........cccccecveeciieiieiiieenieeie e eveeseve e 25
Figure 2: Key AGreement PrOCESSc.eeeiieiiieiiieiieeii ettt ettt ste et e aeeseeeseesaaeenbeesnnea 26
Figure 3: Key Transport PrOCESS.coouiiiiieiiiiiieie ettt ettt ettt ettt et et beeebeenaee s 28
Figure 4: RSA-OAEP Encryption OPeration.........cccceeereeierienieeiienienieeieetesieeie s 70
Figure 5: RSA-OAEP Decryption OPErationccccueeeeveeeiiieessieeeiiieesieeesieeesveeesveessseesssseeens 73
Figure 6: RSA-KEM-KWS Encryption OPerationc.cecueerveeeueerieenieeneeeseeseeeseesseessseesseenns 76
Figure 7: RSA-KEM-KWS Decryption Operation...........ccceecveeerieeeiieeniieeeniieeenieeesveeeneveesssneennns 79
Figure 8: KAST-Dasic SChEME.......coiiiiiiieiieiie ettt e 83
Figure 9: KAS1-responder-confirmation Scheme (from Party V to Party U).......ccccoceviniinnnnne. 85
Figure 10: KAS2-basic SChEME.......cccueiiiiiiiiiiiiiiieicecetceee e 90
Figure 11: KAS2-responder-confirmation Scheme (from Party V to Party U).........cccceeeveeennnnn. 92
Figure 12: KAS2-initiator-confirmation Scheme (from Party U to Party V)cccceovveiieiiennnn. 93
Figure 13: KAS2-bilateral-confirmation SCheme............ccccoecvieviiiiiiiiiiiiiieiccee e 95
Figure 14: KTS-OAEP-DasiC SCheMEc.cooiiiiiiiiiiiieiiecieeeee et 100
Figure 15: KET-OAEP-receiver-confirmation Scheme...........cccccoceviiiiiiiniininicnicnicicnicee 101
Figure 16: KTS-KEM-KES-basic SChemec..cccceviiiiiiiiiiiniiiiiniceccsceecceesecie e 105
Figure 17: KTS-KEM-KWS-receiver-confirmation Schemecccccceeeeieeniieincieeniee e, 106
Tables

Table 1: IFC Parameters for Key Establishmentc.coocvviiiiiiiiieniiieiecieeece e 43

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

1 Introduction

Many U.S. Government Information Technology (IT) systems need to employ strong
cryptographic schemes to protect the integrity and confidentiality of the data that they process.
Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information
Processing Standard (FIPS) 197, Triple DES as specified in NIST Special Publication (SP) 800-
67, and HMAC as defined in FIPS 198-1 [5] make attractive choices for the provision of these
services. These algorithms have been standardized to facilitate interoperability between systems.
However, the use of these algorithms requires the establishment of shared secret keying material
in advance. Trusted couriers may manually distribute this secret keying material, but as the
number of entities using a system grows, the work involved in the distribution of the secret
keying material grows rapidly. Therefore, it is essential to support the cryptographic algorithms
used in modern U.S. Government applications with automated key establishment schemes.

2 Scope and Purpose

This Recommendation provides the specifications of key establishment schemes that are
appropriate for use by the U.S. Federal Government, based on a standard developed by the
Accredited Standards Committee (ASC) X9, Inc.: ANS X9.44, Key Establishment using Integer
Factorization Cryptography [10]. A key establishment scheme can be characterized as either a
key agreement scheme or a key transport scheme. This Recommendation provides asymmetric-
based key agreement and key transport schemes that are based on the Rivest Shamir Adleman
(RSA) algorithm.

When there are differences between this Recommendation and the referenced ANS X9.44[10]
standard, this key establishment schemes Recommendation shall have precedence for U.S.
Government applications.

This Recommendation is intended for use in conjunction with NIST Special Publication 800-57,
Recommendation for Key Management [7]. This key establishment schemes Recommendation,
the Recommendation for Key Management [7], and FIPS 186-3 [3] standard are intended to
provide information for a vendor to implement secure key establishment using asymmetric
algorithms in FIPS 140-2/3 [1] validated modules.

A scheme may be a component of a larger protocol, which in turn provides additional security
properties not provided by the scheme when considered by itself. Note that protocols, per se, are
not specified in this Recommendation.

10

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

3 Definitions, Symbols and Abbreviations

3.1 Definitions

Additional input Information known by two parties that is cryptographically bound to
keying material using the encryption scheme.

Algorithm A clearly specified mathematical process for computation; a set of rules
which, if followed, will give a prescribed result.

Algorithm identifier A unique identifier for a given cryptographic algorithm, together with
any required parameters.

Approved FIPS-approved or NIST-recommended. An algorithm or technique

that meets at least one of the following: 1) is specified in a FIPS or
NIST Recommendation, 2) is adopted in a FIPS or NIST
Recommendation or 3) is specified in a list of NIST-approved security
functions (e.g., specified as approved in the annexes of FIPS 140-2/3).

Assurance of
possession of a
private key

Confidence that an entity possesses a private key associated with a
given public key.

Assurance of validity

Confidence that either a key or a set of domain parameters is
arithmetically correct.

Bit length The length in bits of a bit string.
Bit string An ordered sequence of 0’s and 1°s.
Byte A bit string of length 8. A byte is represented by a hexadecimal string of

length 2. The right-most hexadecimal character represents the right-
most four bits of the byte, and the left-most four bits of the byte
represent the left-most four bits of the byte. For example, 9d represents
the bit string 10011101.

Byte string

A sequence of bytes.

Certification The entity in a Public Key Infrastructure (PKI) that is responsible for
Authority (CA) issuing public key certificates and exacting compliance to a PKI policy.
Ciphertext Data in its enciphered form.

11

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Cryptographic key
(Key)

A parameter used with a cryptographic algorithm that determines its
operation. Examples include:

1. the transformation of plaintext data into ciphertext data,
. the transformation of ciphertext data into plaintext data,
. the computation of a digital signature from data,

2

3

4. the verification of a digital signature,

5. the computation of an authentication code from data,
6

. the verification of an authentication code from data and a received
authentication code, and

7. the computation of a shared secret that is used to derive keying
material.

Data integrity

A property whereby data has not been altered in an unauthorized
manner since it was created, transmitted or stored.

In this Recommendation, the statement that a cryptographic algorithm
"provides data integrity" means that the algorithm is used to detect
unauthorized alterations.

Decryption

The process of transforming ciphertext into plaintext using a
cryptographic algorithm and key.

Digital signature

The result of a cryptographic transformation of data that, when properly
implemented with supporting infrastructure and policy, provides the
services of:

1. origin authentication,
2. data integrity, and

3. signer non-repudiation.

Encryption The process of transforming plaintext into ciphertext using a
cryptographic algorithm and key.
Entity An individual (person), organization, device, or process. “Party” is a

synonym.

Entity authentication

A process that establishes the origin of information, or determines an
entity’s identity to the extent permitted by the entity’s identifier.

12

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Hash function

A function that maps a bit string of arbitrary length to a fixed length bit
string. Approved hash functions are designed to satisfy the following
properties:

1. (One-way) It is computationally infeasible to find any input that
maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any
two distinct inputs that map to the same output.

Approved hash functions are specified in FIPS 180-3 [2].

Hash of a bit string

The hash value produced by applying a hash function to the bit string.

Hash value

The fixed-length bit string produced by a hash function.

Identifier

A bit string that is associated with a person, device or organization. It
may be an identifying name, or may be something more abstract (for
example, a string consisting of an Internet Protocol (IP) address and
timestamp).

If a party owns a key pair that is used in a key establishment transaction,
then the identifier assigned to that party is one that is cryptographically
bound to that key pair. If the party’s key pair is not used in a key
establishment transaction, then the identifier of that party is a non-null
identifier selected in accordance with the protocol utilizing the scheme.

Initiator

The party that begins a key agreement transaction. Contrast with
responder.

Key agreement

A key establishment procedure where the resultant secret keying
material is a function of information contributed by two participants, so
that no party can predetermine the value of the secret keying material
independently from the contributions of the other party. Contrast with
key transport.

Key agreement
transaction

The instance that results in shared secret keying material among
different parties using a key agreement scheme.

Key confirmation

A procedure to provide assurance to one party (the key confirmation
recipient) that another party (the key confirmation provider) actually
possesses the correct secret keying material and/or shared secret.

Key derivation

In this Recommendation, the process by which keying material is
derived from a shared secret and other information.

13

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Key establishment The procedure that results in shared secret keying material among
different parties.

Key establishment An instance of establishing secret keying material using a key

transaction establishment scheme.

Key management

The activities involving the handling of cryptographic keys and other
related security parameters (e.g., [Vs and passwords) during the entire
life cycle of the keys, including their generation, storage, establishment,
entry and output, and destruction.

Key pair A public key and its corresponding private key; a key pair is used with a
public key algorithm.

Key transport A key establishment procedure whereby one party (the sender) selects a
value for the secret keying material and then securely distributes that
value to another party (the receiver). Contrast with key agreement.

Key transport The instance that results in shared secret keying material between

transaction different parties using a key transport scheme.

Key wrap A method of encrypting keying material (along with associated integrity

information) that provides both confidentiality and integrity protection
using a symmetric key algorithm.

Keying material

The data that is necessary to establish and maintain a cryptographic
keying relationship. Some keying material may be secret, while other
keying material may be public. As used in this Recommendation, secret
keying material may include keys, secret initialization vectors or other
secret information; public keying material includes any non-secret data
needed to establish a relationship.

Length in bits of an
integer, x

The length, in bits, of the shortest bit string containing the binary
representation of x. For example, the length in bits of 5 is 3.

Length in bytes of an | The length, in bytes, of the shortest byte string containing the binary
integer, x representation of x. For example, the length in bytes of 5 is 1.

Message A family of one-way cryptographic functions that is parameterized by a
Authentication Code | symmetric key. A given function in the family produces a MacTag on

(MAC) algorithm

input data of arbitrary length. A MAC algorithm can be used to provide
data origin authentication as well as data integrity. In this
Recommendation, a MAC algorithm is used for key confirmation and
validation testing purposes.

14

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Nonce

A time-varying value that has at most a negligible chance of repeating.
For example, a nonce is a random value that is generated anew for each
use, a timestamp, a sequence number, or some combination of these.

Owner

For a key pair, the owner is the entity that is authorized to use the
private key associated with a public key, whether that entity generated
the key pair itself or a trusted party generated the key pair for the entity.

Party

An individual (person), organization, device, or process. “Entity” is a
synonym for party.

Prime number

An integer that is greater than 1 and divisible only by 1 and itself.

Primitive

A low level cryptographic algorithm used as a basic building block for
higher level cryptographic operations or schemes.

Private key

A cryptographic key, used with a public key cryptographic algorithm
that is kept secret. A private key is associated with a public key.

Protocol

A special set of rules used by two or more entities that describe the
message order and data structures for information exchanged between
the entities.

Provider

A party that provides (1) a public key (e.g., in a certificate); (2)
assurance, such as an assurance of the validity of a candidate public key
or assurance of possession of the private key associated with a public
key; or (3) key confirmation. Contrast with recipient.

Public key

A cryptographic key, used with a public key cryptographic algorithm
that may be made public. A public key is associated with a private key.

Public key algorithm

A cryptographic algorithm that uses two related keys, a public key and a
private key. The two keys have the property that determining the private
key from the public key is computationally infeasible.

Public key certificate
(certificate)

A set of data that uniquely identifies an entity’s identifiers, the entity’s
public key, and possibly other information, and is digitally signed by a
trusted party, thereby binding the public key to the included
identifier(s).

15

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Public key
cryptography

A form of cryptography that uses two related keys, a public key and a
private key; the two keys have the property that, given the public key, it is
computationally infeasible to derive the private key.

For key establishment, public key cryptography allows different parties
to communicate securely without having prior access to a shared secret
key, by using one or more pairs (public key and private key) of
cryptographic keys.

Public key validation

The procedure whereby the recipient of a public key checks that the key
conforms to the arithmetic requirements for such a key in order to
thwart certain types of attacks.

Receiver

The party that receives secret keying material via a key transport
transaction. Contrast with sender.

Recipient

A party that receives (1) a public key (e.g., in a certificate); (2)
assurance, such as an assurance of the validity of a candidate public key
or assurance of possession of the private key associated with a public
key; or (3) key confirmation. Contrast with provider.

Responder

The party that does not initiate a key agreement transaction. Contrast
with initiator.

Scheme

A (cryptographic) scheme consists of a specification of unambiguous
transformations that are capable of providing a (cryptographic) service
when properly implemented and maintained. A scheme is a higher level
construct than a primitive and a lower level construct than a protocol.

Security strength
(Also “Bits of
security”)

A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or
system.

Security properties

The security features (e.g., entity authentication, replay protection, or
key confirmation) that a cryptographic scheme may, or may not,
provide.

Sender The party that sends secret keying material to the receiver using a key
transport transaction.
Shall This term is used to indicate a requirement of a Federal Information

processing Standard (FIPS) or a requirement that needs to be fulfilled to
claim conformance to this Recommendation. Note that shall may be
coupled with not to become shall not.

16

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Shared secret keying
material

As used in this Recommendation, the secret keying material that is
either (1) derived by applying the key derivation function to the shared
secret and other shared information during a key agreement process, or
(2) is transported during a key transport process.

Shared secret

A secret value that has been computed during a key establishment
scheme and is used as input to a key derivation function to produce
keying material.

Should

This term is used to indicate an important recommendation. Ignoring the
recommendation could result in undesirable results. Note that should
may be coupled with not to become should not.

Symmetric key

A single cryptographic key that is used with a secret (symmetric) key
algorithm.

Symmetric key
algorithm

A cryptographic algorithm that uses one secret key that is shared
between authorized parties.

Target security

The desired security strength for a cryptographic application.

strength

Trusted party A trusted party is a party that is trusted by an entity to faithfully perform
certain services for that entity. An entity may choose to act as a trusted
party for itself.

Trusted third party A third party that is trusted by its clients to perform certain services,

such as a CA. (By contrast, the initiator and responder (or sender and
receiver) in a scheme are considered to be the first and second parties in
a key establishment transaction.)

3.2 Symbols and Abbreviations

A Additional Input that is bound to keying material, a byte string.

[a, b] The set of integers x such that a <x < b.

AES Advanced Encryption Standard (as specified in FIPS 197 [4]).

ASC The American National Standards Institute (ANSI) Accredited
Standards Committee.

ANS American National Standard.

17

Draft NIST SP 800-56

B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

ASN.1 Abstract Syntax Notation One.

c Ciphertext, an integer.

C Cy C; Ciphertext, each is a byte string.

CA Certification Authority.

context Context string for initiator authentication, a bit string.
CRT Chinese Remainder Theorem.

d RSA private exponent, an integer.

Data A variable-length string of zero or more (eight-bit) bytes
datalLen The length of Data in bytes.

DerivedKeyingMaterial

Derived Keying Material, a bit string.

dP RSA private exponent for the prime factor p in the CRT format,
i.e., d mod (p-1), an integer.

dQ RSA private exponent for the prime factor ¢ in the CRT format,
i.e., d mod (¢-1), an integer.

e RSA public exponent, an integer.

eBits Length in bits of the RSA exponent e.

EphemDatap, EphemDatag,
EphemDatay, EphemDatay

Fresh data contributed by the provider or recipient in a key
confirmation; each is a byte string.

GCD(a, b) Greatest Common Divisor of two non-negative integers a and b

H An approved hash function

hBits Length in bits of a hash value

hLen Length in bytes of a hash value

HMAC Keyed-hash Message Authentication Code (as specified in FIPS

198-1[5])

18

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

12BS

Integer to Byte String

ID

The bit string denoting the identifier associated with an entity.

IDp, IDg, IDy, IDy

Identifier bit strings for parties P, R, U, and V

IFC Integer Factorization Cryptography

K Keying material, a byte string.

KBits Length in bits of the keying material

KLen Length in bytes of the keying material

KAS Key Agreement Scheme.

k Keying material, an integer.

KAS1-basic The basic form of Key Agreement Scheme 1

KAS1-responder-
confirmation

Key Agreement Scheme 1 with responder-confirmation

KAS2-basic

The basic form of Key Agreement Scheme 2

KAS2-responder-
confirmation

Key Agreement Scheme 2 with responder confirmation

KAS2-initiator-
confirmation

Key Agreement Scheme 2 with initiator confirmation

KAS2-bilateral-
confirmation

Key Agreement Scheme 2 with bilateral confirmation

KC Key Confirmation

KDF Key Derivation Function

KEM Key Encapsulation Mechanism

KeyData Keying material other than that which is used for the MacKey
employed in key confirmation.

KTS Key Transport Scheme (i.e. KTS-OAEP or KTS-KEM-KWS)

19

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

KTS-OAEP-basic

The basic form of the Key Transport Scheme with Optimal
Asymmetric Encryption Padding

KTS-OAEP-receiver-
confirmation

Key Transport Scheme with Optimal Asymmetric Encryption
Padding and receiver confirmation

KTS-KEM-KWS-basic

The basic form of the Key Transport Scheme with Key
Encapsulation Mechanism and Key-Wrapping Scheme

KTS-KEM-KWS-
receiver-confirmation

Key Transport Scheme with Key Encapsulation Mechanism, Key-
Wrapping Scheme, and receiver confirmation

KWK Key-Wrapping Key, a byte string

kwkBits Length in bits of the key-wrapping key

kwkLen Length in bytes of the key-wrapping key

KWS (Symmetric) Key-Wrapping Scheme.

LCM(a, b) Least common multiple of two non-negative integers a and b.
MAC Message Authentication Code.

MacData A byte string input to the MacTag computation.

MacDatay, (or MacDatay)

MacData associated with Party U (or Party V, respectively), and
used to generate MacTagy (or MacTagy, respectively). Each is a
byte string.

MacKey Key used to compute the MAC, a byte string.
MacKeyLen Length in bytes of the MacKey.
MacTag A byte string that allows an entity to verify the integrity of the

information. MacTag is the output of the MAC algorithm. The
literature sometimes refers to MacTag as a Message
Authentication Code (MAC).

MacTagy (MacTagy)

The MacTag generated by Party V (or Party U, respectively). Each
is a byte string.

MacTagLen

The length of MacTag in bytes.

20

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Mask

Mask, a byte string.

maskLen

Length in bytes of the mask.

max_hash_inputBits

An integer that indicates the maximum length, in bits, of a bit
string input to the hash function

MGF Mask Generation Function

mgfSeed String from which a mask is derived, a byte string.
n RSA modulus

(n, d) RSA private key in the basic format.

(n, e) RSA public key.

Ny Nonce contributed by party V, a byte string.
nBits Length in bits of the RSA modulus 7.

nlLen Length in bytes of the RSA modulus ».

Null The empty bit string

Otherlnfo Other information for key derivation, a bit string.

p First prime factor of RSA modulus 7.

PrivKeyy, PrivKeyy Private key of party U or V.

PubKeyy, PubKeyy Public key of party U or V.

q Second prime factor of the RSA modulus 7.

qlnv Inverse of ¢ modulo p in the CRT format, i.e., ¢¢ mod p, an
integer.

RBG Random Bit Generator.

RSASVE RSA Secret Value Encapsulation.

RSA-KEM-KWS RSA Key Encapsulation Mechanism with a Key-Wrapping

Scheme

21

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008

RSA-OAEP RSA with Optimal Asymmetric Encryption Padding.
S String of bytes.

S Security strength in bits.

SHA Secure Hash Algorithm.

TransportedKeyingMaterial

Transported Keying Material

TTP A Trusted Third Party.

U The initiator or sender of a key establishment process.

Vv The responder or receiver in a key establishment process.

X Byte string to be converted to or from an integer, output of
conversion from an ASCII string.

X=?Y Verify that X equals Y.

X Non-negative integer to be converted to or from a byte string.

x mod n The modular reduction of the (arbitrary) integer x by the positive
integer n (the modulus). For the purposes of this Recommendation,
y = x mod n is the unique integer satisfying the following two
conditions: 0 <y <n and x — y is divisible by 7.

x" mod n The multiplicative inverse of the integer x modulo the positive
integer n. This quantity is defined if and only if x is relatively
prime to 7. For the purposes of this Recommendation, y = x™ mod
n is the unique integer satisfying the following two conditions:
0<y<nand1=(xy) mod n.

{X} Indicates that the inclusion of X is optional.

{x, v} A set containing the integers x and y.

XY Concatenation of two strings X and Y.

[x]

The ceiling of x; the smallest integer > x. For example, [5]= 5 and
[5.3]=6.

22

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Lx] The floor of x, the largest integer less than or equal to x. For
example, |5]=5and [5.3]=5.

| x] The absolute value of x.

XOR Exclusive-Or, defined as bit-wise modulo 2 arithmetic with no
carry.

Z A shared secret that is used to derive secret keying material using

a key derivation function, a byte string.

z The integer form of Z

Mn) Lambda function of_ the RSA modulus n, i.e., the least positive
integer i such that ' = 1 for all a relatively prime to n. If n = pg
where p and ¢ are distinct primes, then A(n) = LCM(p-1, g-1).

d(n) Totient function of the RSA modulus 7, ie., the number of
integers between 0 and n-1 that are relatively prime to n. If n = pq,
where p and ¢ are distinct primes, then ¢(n) = (p-1)(g-1).

I Concatenation operator.

@ XOR Operator.

4 Key Establishment Schemes Overview

Secret cryptographic keying material may be electronically established between parties by using
a key establishment scheme, that is, by using either a key agreement scheme or a key transport
scheme.

During key agreement, information is exchanged between both parties that permits each party to
contribute to and derive the secret keying material. Key agreement schemes may use either
symmetric key or asymmetric key (public key) techniques. The key agreement schemes
described in this Recommendation use public key techniques. The party that begins a key
agreement scheme is called the initiator, and the other party is called the responder.

During key transport (where one party selects the secret keying material), encrypted secret
keying material is transported from the sender to the receiver. The key transport schemes
described in this Recommendation use either public key techniques or a combination of public
key and symmetric key techniques. The party that sends the secret keying material is called the
sender, and the other party is called the receiver.

23

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation is
based on the intractability of factoring large integers.

For compliance with this Recommendation, equivalent processes may be used. Two processes
are equivalent if, whenever the same values are input to each process (either as input parameters
or as values made available during the process), each process produces the same output as the
other.

Some processes are used to provide assurance (for example, assurance of the arithmetic validity
of a public key or assurance of possession of a private key associated with a public key). The
party that provides the assurance is called the provider (of the assurance), and the other party is
called the recipient (of the assurance).

Note that the terms initiator, responder, sender, receiver, provider and recipient have specific
meanings in this Recommendation.

A number of steps are performed to establish secret keying material as described in Sections 4.1,
4.2, and 4.3.

4.1 Key Establishment Preparations by an Owner

The owner of a private/public key pair is the entity that is authorized to use the private key of
that key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a
key establishment process (i.e., either key agreement or key transport).

The first step in the process is for the entity to obtain a key pair. Either the entity generates the
key pair as specified in Section 6.3 or a trusted third party (TTP) generates the key pair as
specified in Section 6.3, and provides it to the entity. The entity (i.e., the owner) obtains
assurance of key pair validity, and as part of the process, obtains assurance that it actually
possesses the (correct) private key. Approved methods for obtaining assurance of key pair
validity by the owner are addressed in Section 6.4.1.

An identifier (see Section 3.1) is used to name the entity that is authorized to use the private key
corresponding to a particular public key (i.e., the identifier names the key pair’s owner). This
name may uniquely distinguish the entity from all others, in which case it could rightfully be
considered an identity. However, the name may be something less specific — an organization,
nickname, etc. — hence, the term identifier is used in this Recommendation, rather than the term
identity. A key pair’s owner is responsible for ensuring that the identifier associated with its
public key is appropriate for the applications in which the public key will be used.

This Recommendation requires that there is a trustworthy binding of each entity’s identifier to
the entity’s public key. The binding of an identifier to a public key may be accomplished by a
trusted authority (i.e., a binding authority; for example, a registration authority working with a
CA who creates a certificate containing both the public key and the identifier). The binding
authority verifies the identifier chosen for the owner. The binding authority is also responsible
for checking the arithmetic validity of the owner’s public key, and the owner’s possession of the
private key corresponding to that public key. The methods used by a third party trusted by the

24

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

recipient to obtain that assurance are beyond the scope of this Recommendation (see Seon
8.1.5.1.1.2 of SP 800-57 [7]).

Owner > .
generates Obtain
Key Pair
TP, (6.3)
generates

Owner obtains
Assurance of
Key Pair Validity
(6.4.1)

Provide
Assurance of Possession
and Identifier to a
Binding Authority

Owner Ready for Key Establishment

Figure 1: Owner Key Establishment Preparations

After the above steps have been performed, the entity (i.e., the key pair owner) is ready to enter
into a key establishment process.

4.2 Key Agreement Process

Figure 2 depicts the steps implemented by an entity when establishing secret keying material
with another entity using one of the key agreement schemes described in this Recommendation.
(Some discrepancies in ordering may occur in practice, depending on the communication
protocol in which the key agreement process is performed.) Depending on the key agreement
scheme, the entity could be either the key agreement initiator or responder. Note that some of the
actions shown may not be a part of every scheme. For example, key confirmation is not provided
in the basic key agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this
recommendation indicate when a particular action is required.

25

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography

December, 2008
Obtain Other Entity’s
Public Key Generate
and (Random) Secret
Obtain Assurance or
of its Validity Nonce
Send

Public-Key-Encrypted Secret

g or
(Plaintetext) Nonce

\ 4

Receive & Decrypt Ciphertext

Retrieve Entity’s Own _ (to obtain Secret value)

Private Key " or

Receive Nonce

\ 4
Generate a Shared Secret (Z)
and
Derive Secret Keying Material

\ 4
Zeroize Shared Secret (Z)

A\ 4

Perform Key Confirmation
(if required by scheme)

\ 4
Obtain Assurance that Each
Key-Pair Owner Possesses the
(Correct) Private Key

A4

Key Agreement Completed

Figure 2: Key Agreement Process

26

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Each participant obtains the identifier associated with the other entity, and verifies that the
identifier of the other entity corresponds to the entity with whom the participant wishes to
establish secret keying material.

Each entity that requires the other entity’s public key for use in the key agreement scheme
obtains the public key bound to the other party’s identifier, and obtains assurance of the validity
of the public key. Approved methods for obtaining assurance of the validity of another entity’s
public key are provided in Section 6.4.2.

Each entity generates either a (random) secret value (which becomes a shared secret when
transmitted to the other entity) or a nonce, as required by the particular key agreement scheme. If
the scheme requires an entity to generate a secret value, that secret value is generated as
specified in Section 5.3 and encrypted using the other entity's public key. The resulting
ciphertext is then provided to the other entity. If the key agreement scheme requires that an entity
provide a nonce, that nonce is generated as specified in Section 5.6 and provided (in plaintext
form) to the other party. (See Sections 8.2 and 8.3 for details).

Each participant in the key agreement process uses the appropriate public and/or private keys to
establish a shared secret (Z) as specified Section 8.2.2 or 8.3.2. Each participant then derives
secret keying material from the shared secret (and other information), as specified in Section 5.9.

If the key agreement scheme includes key confirmation provided by one or both of the
participants, then key confirmation is performed as specified in Section 8.2.3 or 8.3.3, thus
providing assurance that the key pair owner possesses the (correct) private key.

The owner of any key pair used during the key agreement transaction is required to have
assurance that the owner is in possession of the correct private key. Likewise, the recipient of
another entity’s public key is required to have assurance that its owner is in possession of the
corresponding private key. Assurance of private key possession is obtained prior to using the
derived keying material for purposes beyond those of the key agreement transaction itself. This
assurance may be provided/obtained either through key confirmation, or by some other
approved means (see Sections 6.5.1 and 6.5.2).

27

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

December, 2008

4.3 IFC-based Key Transport Process

Using Integer Factorization Cryptography

Figure 3 depicts the steps implemented by two entities when using one of the key-transport
schemes described in this Recommendation to establish secret keying material.

Key Transport Sender

and

Obtain Receiver’s Public Key

Obtain Assurance of its Validity

Select the
Keying Material

A 4

Obtain Assurance of
Receiver’s Possession of
the (Correct) Private Key

(if Key Confirmation is
not required by scheme)

\ 4

Encrypt Keying Material

v

Transport

A 4

Encrypted Keying Material

Key Transport Receiver

A 4

Receive Encrypted Keying Material
and
Retrieve Receiver’s Private Key

Y

Decrypt
Encrypted Keying Material

A\ 4

Provide Key Confirmation
(if required by scheme)

\ 4

Key Transport Completed

Figure 3: Key Transport Process

The entity who will act as the sender obtains the identifier associated with the entity that will act
as the receiver, and verifies that the receiver’s identifier corresponds to an entity with whom the
sender wishes to establish secret keying material.

28

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Prior to performing key transport, the sender obtains the receiver’s public key and obtains
assurance of its validity. Approved methods for obtaining assurance of the validity of another
entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance
that the receiver is in possession of the private key corresponding to the receiver’s public key
prior to key transport, unless that assurance is obtained via key confirmation included as part of
the scheme. (See Sections 9.2 and 9.3 for details).

The sender selects the secret keying material (and, perhaps, other data) to be transported to the
other entity. Then, using the intended receiver’s public key, the sender either encrypts that
material directly (as specified in Section 9.2.3), or, employs a combination of secret value
encapsulation and key-wrapping (as specified in Section 9.3.3). The resulting ciphertext is
transported to the receiver.

Prior to participating in a key establishment transaction, the receiver is required to have
assurance of the validity of it’s key pair. This assurance may be renewed whenever fresh
assurance is desired. Upon (or before) receipt of the transported ciphertext, the receiver retrieves
the private key from its own key pair. Using its private key, the receiver takes the necessary steps
(as specified in Section 9.2.3 or 9.3.3) to decrypt the ciphertext and obtain the plaintext keying
material.

If the key-transport scheme includes key confirmation, then key confirmation is provided by the
receiver to the sender as specified in Section 9.2.4 or 9.3.4. Through the use of key confirmation,
the sender can obtain assurance that the receiver has correctly recovered the keying material
from the ciphertext. The sender can also obtain assurance that the receiver was in possession of
the correct private key.

29

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

5 Cryptographic Elements

This section describes the cryptographic elements that are used in the development of key
establishment schemes.

5.1 Cryptographic Hash Functions

An approved hash function shall be used when a hash function is required (for example, for the
key derivation function or to compute a MAC when HMAC, as specified in FIPS 198-1 [5], is
used). FIPS 180-3 [2] specifies approved hash functions. The hash function shall be selected in
accordance with the parameter lists in Table 1 of Section 6.2.3.

5.2 Message Authentication Code (MAC) Algorithm

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions
that is parameterized by a symmetric key. The MAC algorithm is used to provide key
confirmation as specified in this Recommendation using an appropriate scheme from this
Recommendation, and is used to validate implementations of the key establishment schemes
specified in this Recommendation (see Section 5.2.3).

In the case of key confirmation, an entity is required to compute a MacTag on received or
derived data using the MAC function determined by a symmetric key derived from a shared
secret (when a key agreement scheme is used) or from transported keying material (when a key
transport scheme is used). The MacTag is sent to another entity in order to confirm that the
keying material is correct. An approved MAC algorithm with appropriate parameter choices
(see Section 6.2.3) shall be used to compute a MacTag, for example, HMAC [5] or CMAC][6].

5.2.1 MacTag Computation

The computation of the MacTag is represented as follows:
MacTag = MAC(MacKey, MacTagLen, MacData).

The MacTag computation shall be performed using an approved MAC algorithm. In the above
equation, MAC represents an approved MAC algorithm; MacKey represents a symmetric key
obtained from the DerivedKeyingMaterial (when a key agreement scheme is used for key
confirmation) or from the transported keying material (when a key transport scheme is used for
key confirmation) (see Section 6.6.1 along with Sections 8.2.3 and 8.3.3 for key agreement and
9.2.4 and 9.3.4 for key transport); MacTagLen represents the length of MacTag; and MacData
represents the data on which the MacTag is computed. The minimum for MacTaglLen is
specified in Table 1 of Section 6.2.3. The minimum length for MacKey is also specified in Table
1. See [5] and [6].

30

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

5.2.2 MacTag Checking

To check a received MacTag (e.g., received during key confirmation and/or implementation
validation), a new MacTag is computed—using the values of MacKey, MacTagLen, and
MacData possessed by the recipient/receiver (as specified in Sections 5.2.1 and 5.2.3). The new
MacTag is compared with the received MacTag. If their values are equal, then it may be inferred
that the same MacKey, MacTagLen, and MacData values were used in the two MacTag
computations.

5.2.3 Implementation Validation Message

For purposes of validating an implementation of the schemes in this Recommendation during an
implementation validation test (under the NIST Cryptographic Algorithm Validation Program),
the value of MacData shall be the string “Standard Test Message”, followed by a 128-bit field
for a nonce. The default value for this field is all binary zeros. Different values for this field will
be specified during testing. This is for the purpose of testing when no key confirmation
capability exists.

5.3 Random Bit Generation

Whenever this Recommendation requires the use of a randomly generated value (for example,
for keys or nonces), the values shall be generated using an approved random bit generator
(RBG) at an appropriate security strength. Approved RBG methods and methods for converting
the random bits to an integer are provided in SP 800-90. The security strength provided by an
RBG employed in this Standard shall be greater than or equal to the target security strength for
the scheme in which it is employed.

54 Prime Number Generators

A prime number generator employs a random bit generator and a primality test in order to
produce random prime numbers in a certain range, possibly with certain structure.

Only approved prime number generation methods shall be employed in this Recommendation.
Approved prime number generation methods are specified in FIPS 186-3 [3].

The prime number generators in FIPS 186-3 accept input values that include the selected public
exponent e and the desired length (in bits) of the modulus 7, and use an approved random bit
generator to generate the prime factors p and ¢ with (at least) the following properties:

1. Each is between |_\/§(2 nBits2 =1y T and 2 "B _ 1 inclusive,
2. p—1andg -1 are relatively prime to e, and

3 Ip . q| <9 nBits/2 — 100

31

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
5.5 Primality Testing Methods

A primality testing method determines whether an integer is prime with a negligible probability
of error. Only approved primality testing methods shall be employed in this Standard.
approved primality testing methods as of the publication of this Standard are listed in FIPS 186-
3.

5.6 Nonces

A nonce is a time-varying value, represented as a byte string that has (at most) a negligible
chance of repeating. For example, a nonce may be composed of one (or more) of the following
components:

1. A random value that is generated anew for each nonce, using an approved random bit
generator. The security strength of the RBG used to obtain each random value shall be
greater than or equal to the security strength associated with the modulus used in the key
establishment scheme (see SP 800-57-Part 1 [7]). The length of the RBG output shall be
at least the security strength of the key establishment scheme. A nonce containing a
component of this type is called a random nonce.

2. A timestamp of sufficient resolution (detail) so that it is different each time it is used.
3. A monotonically increasing sequence number.

If a combination of a timestamp and a monotonically increasing sequence number is used
without a random nonce, the sequence number shall be reset only when the timestamp changes.
(For example, a timestamp may show the date but not the time of day, so a sequence number is
appended that will not repeat during a particular day.)

Nonces are used, for example, in implementation validation testing (see Section 5.2.3), and in
KAST schemes (see Section 8.2).

When using a nonce, a random nonce should be used.

5.7 Symmetric Key-Wrapping Algorithms

A symmetric key-wrapping algorithm wraps (i.e., encrypts and integrity-protects) keying
material using a symmetric key-wrapping key. In this Recommendation, a symmetric key-
wrapping algorithm is used by the KTS-KEM-KWS schemes specified in Section 9.3. The
wrapping operation produces a ciphertext C from keying material K, using the key-wrapping key
KWK and additional input 4 which is known to both the wrapping and the unwrapping parties,
but may be null. 4 is bound to K in that C is a cryptographic function of both values. The
unwrapping operation recovers K from C using KWK and A; the unwrapping operation then
verifies the integrity of K and 4 by means of an integrity test built into the wrapping algorithm.
Thus, the key-wrapping algorithm shall support both confidentiality and integrity properties.
There may be restrictions on the length of the keying material and the additional input, but such
bounds are generally very large.

In this Recommendation, the wrapping operation is specified as:

32

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
C=KWA.WRAP(KWK, K, 4),
and the unwrapping operation is specified as:
K=KWA.UNWRAP(KWK, C, A) ,

where KWK is the key-wrapping key, K is the plaintext keying material, 4 is additional input,
and C is the ciphertext.

Approved/allowed' key-wrapping algorithms shall be used that employ approved block cipher
algorithms and keys that support a security strength that is equal to or greater than the security
strength required to protect the data to be cryptographically protected by the wrapped keying
material (see [7]). For example, if the data requires 112 bits of security (the target security
strength), the block cipher and keys used for key-wrapping shall support a security strength of at
least 112 bits. Note, that in this case, the wrapped keying material, together with the algorithm to
be used to protect the data, shall also support a security strength of at least 112 bits.

5.8 Mask Generation Function (MGF)

MGEF is a mask generation function based on an approved hash function (see Section 5.1). The
purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings.
The MGF is used by the RSA-OAEP based schemes specified in Section 9.2. The lengths of the
MGEF seed and the mask in MGF are both variable.

Let H be an approved hash function, and let #Len denote the length of the hash function output
in bytes.

For the purposes of this Standard, MGF shall not be run more than once by each party during a
given transaction, using a given MGF seed (i.e., a mask shall be derived at most once from a
given MGF seed).

Function call: MGF(mgfSeed, maskLen)
Input:

1. mgfSeed: a string from which the mask is generated, a byte string.
2. maskLen: the intended length in bytes of the mask.

Output:

mask: a byte string of length maskLen bytes.

Errors:

An indication that the mask is too long.

' Allowed key wrap algorithms are specified in FIPS 140-2 Implementation Guidance IG 7.1.

33

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
Process:

1. Let T be the empty string.

2. For counter from 0 to| maskLen / hLen 1— 1, do the following:
a. Let D=12BS(counter, 4) (see Appendix B.1).
b. Let T= T || H(mgfSeed || D).

3. Output the first maskLen bytes of T as the byte string mask.

5.9 Key Derivation Functions for Key Establishment Schemes

An approved or allowed (i.e., see FIPS 140-2/3 Annexes) key derivation function (KDF) shall
be used to derive secret keying material from a shared secret during the execution of any key
establishment scheme from the KAS1, KAS2, and KTS-KEM-KWS families of schemes. The
output from the KDF shall only be used for secret keying material, such as a symmetric key used
for data encryption or message integrity, a secret initialization vector, or a master key that will be
used to derive other keys (possibly using a different process). Non-secret keying material (such
as a non-secret initialization vector) shall not be generated using the shared secret.

Each call to the KDF requires a freshly computed shared secret, and this shared secret shall be
zeroized immediately following its use. The derived secret keying material shall be computed in
its entirety before outputting any portion of it.

The derived secret keying material may be parsed into one or more keys or other secret
cryptographic keying material (for example, secret initialization vectors). In cases where key
confirmation is included in a key agreement scheme from the KAS1 family or the KAS2 family,
MacKey shall be formed from the initial bits of the KDF output. (When key confirmation is
included in a key transport scheme from the KTS-OAEP family or the KTS-KEM-KWS family,
MacKey is not obtained from the output of the KDF, but shall be formed from the initial bits of
the transported keying material.) In all cases, MacKey shall be zeroized after its use (in
particular, MacKey shall not be used for purposes other than key confirmation).

Sections 5.9.1 and 5.9.2 specify two approved KDFs for use in key establishment. They differ
only in the way that they format the Otherinfo bit string. Other allowable methods and the
protocols that they may be used with are referenced in FIPS 140-2 Annex D. Any hash function
used in a KDF shall be approved (see Section 5.1) and shall also meet the selection
requirements specified herein (see Table 1 in Section 6.2.3).

5.9.1 Concatenation Key Derivation Function (Approved Alternative 1)
This section specifies an approved key derivation function, based on concatenation.

The Concatenation KDF is as follows:

Function call: KDF(Z, KBits, OtherInfo).

34

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Fixed Values (implementation dependent):

1.

hBits: an integer that indicates the length (in bits) of the output of the hash function used

to derive the secret keying material.

max_hash_inputBits: an integer that indicates the maximum length (in bits) of a bit string

input to the hash function.
Auxiliary Function:
H: an approved hash function.

Input:

1.
2.

Z: a byte string that is the shared secret.

KBits: An integer that indicates the length (in bits) of the secret keying material to be

generated; KBits shall be less than or equal to 4Bits x (2°*—1).

OtherInfo: A bit string equal to the following concatenation:

AlgorithmID || PartyUlnfo || PartyVInfo{ || SuppPublnfo} { || SuppPrivinfo}
where the subfields are defined as follows:

a.

AlgorithmID: A bit string that indicates how the derived keying material will be
parsed and for which algorithm(s) the derived secret keying material will be used
after any MacKey is extracted from the derived keying material when key
confirmation is performed. For example if key confirmation is not performed,
AlgorithmID might indicate that bits 1-128 are to be used as a 128-bit AES key. If
key confirmation is performed, then AlgorithmID might indicate that bits 1- 128
are used as a MacKey, and bits 129-256 are to be used as the 128-bit AES key.

PartyUlnfo: A bit string containing public information that is required by the
application using this KDF to be contributed by party U to the key derivation
process. At a minimum, PartyUlnfo shall include /Dy, the identifier of party U, as
a separate unit of information.

PartyVinfo: A bit string containing public information that is required by the
application using this KDF to be contributed by party V to the key derivation
process. At a minimum, PartyVinfo shall include /Dy, the identifier of party V, as
a separate unit of information. When this KDF is used in a KASI scheme, the
nonce, Ny, supplied by party V shall be included in PartyVinfo as a separate unit
of information, immediately following /Dy.

(Optional) SuppPublInfo: A bit string containing additional, mutually-known
public information.

(Optional) SuppPrivinfo: A bit string containing additional, mutually-known
private information (for example, a shared secret symmetric key that has been
communicated through a separate channel).

35

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Each of the three subfields AlgorithmID, PartyUlnfo, and PartyVinfo shall be the
concatenation of a fixed, application specific sequence of substrings of information. Each
substring representing a separate unit of information shall have one of these two formats:
Either it is a fixed-length bit string, or it has the form datalLen || Data — where Data is a
variable-length string of zero or more (eight-bit) bytes, and datalen is a fixed-length,
big-endian counter that indicates the length (in bytes) of Data. (In this variable-length
format, a null string of data shall be represented by using datalLen to indicate that Data
has length zero.) An application using this KDF shall specify the ordering and number of
the separate information substrings used in each of the subfields AlgorithmiD,
PartyUlnfo, and PartyVinfo, and shall also specify which of the two formats (fixed-
length or variable-length) is used for each substring. The application shall specify the
lengths for all fixed-length quantities, including the dataLen counters.

The subfields SuppPrivinfo and SuppPublnfo (when allowed by the application) shall be
formed by the concatenation of a fixed, application specific sequence of substrings of
additional information that may be used in key derivation upon mutual agreement of
parties U and V. Each substring representing a separate unit of information shall be of the
form dataLen || Data — where Data is a variable-length string of zero or more (eight-bit)
bytes, and datalen is a fixed-length, big-endian counter that indicates the length (in
bytes) of Data. The information substrings that parties U and V choose not to contribute
are set equal to Null, and are represented in this variable-length format by setting datalen
equal to zero. If an application allows the use of the OtherInfo subfield SuppPrivinfo
and/or the subfield SuppPublnfo, then the application shall specify the ordering and the
number of substrings that may be used in the allowed subfield(s) and shall specify the
fixed-length of the dataLen counters.

Output:

The bit string DerivedKeyingMaterial of length KBits bits (or an error indicator).
Any scheme attempting to call this key derivation function with KBits greater than or equal
to hBits x (2°* —1) shall output an error indicator and stop without outputting
DerivedKeyingMaterial. Any call to the key derivation function involving an attempt to hash
a bit string that is greater than max hash_inputBits bits long shall cause the KDF to output
an error indicator and stop without outputting DerivedKeyingMaterial.

Process:

L.
2.
3.

reps = [KBits | hBtis |.
If reps > (2°* 1), then output an error indicator and stop.
Initialize a 32-bit, big-endian bit string counter as 00000001 .

If counter || Z || OtherInfo is more than max_hash_inputBits bits long,
then output an error indicator and stop.

For i =1 to reps by 1, do the following:
a. Compute Hash; = H(counter || Z || OtherInfo).

36

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

6.

Notes:

5.9.2

Using Integer Factorization Cryptography
December, 2008
b. Increment counter (modulo 2°%), treating it as an unsigned 32-bit integer.

Let Hhash be set to Hash,.,s if (KBits / hBits) is an integer; otherwise, let Hhash be set to
the (KBits mod ABits) leftmost bits of Hash,ps.

Set DerivedKeyingMaterial = Hash; || Hash; || ... || Hashyeps-1 || Hhash.

. Party U shall be the initiator or sender, and party V shall be the responder or receiver, as

assigned by the relying protocol in accordance with the use of those designators by the
key establishment scheme employing the KDF.

When a party owns a key pair that is used by the key establishment scheme, the identifier
assigned to that party shall be one that is bound to that key pair. (This will always be the
case for party V.) If a key establishment scheme does not require a party to contribute a
public key, then the identifier of that party is a non-null identifier selected in accordance
with the protocol utilizing the scheme (This may be the case for party U.). The rationale
for including the identifiers in the KDF input is provided in Appendix B of [SP 800-
56A].

ASN.1 Key Derivation Function (Approved Alternative 2)

This section specifies an approved key derivation function utilizing ASN.1 DER encoding of
OtherlInfo. In all other respects, it is the same as the key derivation function specified in Section

5.9.1.

The ASN.1 KDF is as follows:
Function call: KDF(Z, KBits, OtherInfo).

Fixed Values (implementation dependent):

1.

hBits: an integer that indicates the length (in bits) of the output of the hash function used
to derive the secret keying material.

max_hash_inputBits: an integer that indicates the maximum length (in bits) of a bit string
input to the hash function.

Auxiliary Function:
H: an approved hash function.

Input:
L.

2.

Z: a byte string that is the shared secret.

KBits: An integer that indicates the length (in bits) of the secret keying material to be
generated; KBits shall be less than or equal to ABits x (2*2-1).

Otherlnfo: A bit string specified in ASN.1 DER encoding, which consists of the
following subfields of information in some application-specific order:

37

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

AlgorithmID: A bit string that indicates how the derived keying material will
be parsed and for which algorithm(s) the derived secret keying material will
be used after any MacKey is extracted from the derived keying material when
key confirmation is performed. For example if key confirmation is not
performed, AlgorithmID might indicate that bits 1-128 are to be used as a 128-
bit AES key. If key confirmation is performed, then AlgorithmID might
indicate that bits 1- 128 are used as a MacKey, and bits 129-256 are to be used
as the 128-bit AES key.

PartyUlnfo: A bit string containing public information that is required by the
application using this KDF to be contributed by party U to the key derivation
process. At a minimum, PartyUlnfo shall include IDy, the identifier of party
U, as a separate unit of information.

PartyVinfo: A bit string containing public information that is required by the
application using this KDF to be contributed by party V to the key derivation
process. At a minimum, PartyVInfo shall include /Dy, the identifier of party
V, as a separate unit of information. When this KDF is used in a KASI1
scheme, the nonce, Ny, supplied by party V shall be included in PartyVinfo as
a separate unit of information, following /Dy.

(Optional) SuppPublInfo: A bit string containing additional, mutually-known
public information.

(Optional) SuppPrivinfo: A bit string containing additional, mutually-known
private information (for example, a shared secret symmetric key that has been
communicated through a separate channel).

An application using this KDF is responsible for specifying the ASN.1 structure of
OtherlInfo. In particular, applications using this KDF shall specify the ordering, number,
and ASN.I type of the separate units of information contained in each of the subfields
AlgorithmID, PartyUlnfo, and PartyVInfo. Applications allowing the use SuppPrivinfo
subfield and/or the SuppPublnfo subfield, shall also specify the ordering, number and
ASN.1 type of the additional units of information that may be used in the allowed
subfield(s).

Output:

The DerivedKeyingMaterial as a bit string of length KBits bits (or an appropriate error
indicator). The ASN.1 KDF produces secret keying material that is at most 4Bits x (2°* 1)
bits in length. Any call to this key derivation function using a KBits value that is greater than
hBits x (2°*-1) shall cause the KDF to output an error indicator and stop without outputting
DerivedKeyingMaterial. Any call to the key derivation function involving an attempt to hash
a bit string that is greater than max_hash_inputBits bits long shall cause the KDF to output an
error indicator and stop without outputting DerivedKeyingMaterial.

Process:

38

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

el

Notes:

6

6.1

Using Integer Factorization Cryptography
December, 2008
reps =| KBits | hBits |.
If reps > (2** 1), then output an error indicator and stop.
Initialize a 32-bit, big-endian bit string counter as 00000001 6.

If counter || Z || OtherInfo is more than max_hash_inputBits bits long,
then output an error indicator and stop.

For i =1 to reps by 1, do the following:
a. Compute Hash; = H(counter || Z || OtherInfo).
b. Increment counter (modulo 2°%), treating it as an unsigned 32-bit integer.

Let Hhash be set to Hash,.,s if (KBits / hBits) is an integer; otherwise, let Hhash be set to
the (KBits mod ABits) leftmost bits of Hash,ps.

Set DerivedKeyingMaterial = Hash, || Hash, || ... || Hashyeps-1 || Hhash.

. Party U shall be the initiator or sender, and party V shall be the responder or receiver, as

assigned by the relying protocol in accordance with the use of those designators by the
key establishment scheme employing the KDF.

When a party owns a key pair that is used by the key establishment scheme, the identifier
assigned to that party shall be one that is bound to that key pair. (This will always be the
case for party V.) If a key establishment scheme does not require a party to contribute a
public key, then the identifier of that party is a non-null identifier selected in accordance
with the protocol utilizing the scheme. (This may be the case for party U.). The rationale
for including the identifiers in the KDF input is provided in Appendix B of [SP 800-
56A].

RSA Key Pairs

General Requirements

The following are requirements on key pairs (see the Recommendation for Key Management

[7D:
1.

Each key pair shall be created using an approved key generation method as specified in
Section 6.3.

The private keys and prime factors shall be protected from unauthorized access,
disclosure, and modification.

3. Each Public key-establishment key shall be bound to an identifier corresponding to the

owner.

39

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

6.2

6.2.1

Using Integer Factorization Cryptography
December, 2008

Public keys shall be protected from unauthorized modification. This is often
accomplished by using public key certificates that have been signed by a Certification
Authority (CA).

A recipient of a public key shall be assured of the data integrity and correct association of
(a) the public key and (b) the identifier of the entity that owns the key pair (that is, the
party with whom the recipient intends to establish secret keying material). This assurance
is often provided by verifying a public-key certificate that was signed by a trusted third
party (for example, a CA), but may be provided by direct distribution of the public key
and identifier from the owner, provided that the recipient trusts the owner and distribution
process to do this.

One key pair shall not be used for different cryptographic purposes (for example, a
digital signature key pair shall not to be used for key establishment or vice versa) with
the following possible exception: when requesting the (initial) certificate for a public key-
establishment key, the key establishment private key associated with the public key may
be used to sign the certificate request. A key pair may be used in more than one key
establishment scheme. However, a key pair use for schemes specified in this
recommendation should not be used for any schemes not specified herein.

An owner and a recipient of a public key shall have assurance of the validity of the
owner’s public key. This assurance may be provided, for example, through the use of a
public key certificate if the CA obtains sufficient assurance of public key validity as part
of its certification process. See Section 6.4. The application performing the key
establishment on behalf of the recipient should determine whether or not to allow key
establishment based upon the method(s) of assurance that was used. Such knowledge
may be explicitly provided to the application in some manner, or may be implicitly
provided by the operation of the application itself.

An owner and a recipient of a public key shall have assurance of the owner’s possession
of the associated private key (see Section 6.5). The owner or a process acting on behalf of
the owner shall know the method used to obtain assurance of possession of the owner’s
private key. The recipient or process acting on behalf of the recipient shall know the
method used to provide assurance to the recipient of the owner’s possession of the private
key. This assurance may be provided, for example, through the use of a public key
certificate if the CA obtains sufficient assurance of possession as part of its certification
process.

The owner shall have assurance of the validity and possession of the owner’s key pair
(See Sections 6.4.1 and 6.5.1). (Make a higher number)

Criteria for RSA Key Pairs for Key Establishment

Definition of a Key Pair

An RSA key pair, in its basic form, consists of an RSA public key (7, e) and an RSA private key
(n, d), where:

40

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

1. n, the modulus, shall be the product of exactly two odd positive prime factors, p and ¢
where nBits is the length in bits of n as specified for the desired security strength s (see
Table 1) and nLen is the corresponding length in bytes.

2. The public exponent e shall be selected with the following constraints:

a. The public exponent e shall be selected prior to generating the prime factors p and
¢ and the private exponent d.

b. The exponent e shall be an odd positive integer such that:
65,537 <e<2”°

Note that the value of e may be the same for different key pairs.

3. Two secret and randomly generated positive primes p and g shall be selected with the
following constraints:

a. The prime factors of the modulus shall be generated independently at random for
different key pairs.

b. LCM((p-1), (g-1)) shall be greater than e and relatively prime to e.

c. The private prime factor p shall be selected randomly from the primes that satisfy
(\/E)(z(nBitS/Z) - 1) Sp < (2nBits/2_1)'

d. The private prime factor ¢ shall be selected randomly from the primes that satisfy
(,\/E)(z(nBl'lS/Z)f 1) < q < (2nBl'ts/2_1).

e. The difference between p and ¢ shall be > 205%/2) =100,

f. The prime factors p and ¢ shall be generated using an approved method meeting
the above constraints. Such methods are provided in Appendix B.3 of FIPS 186-3.

4. The private exponent d shall be selected with the following constraints after the
generation of p and ¢:

a. The exponent d shall be a positive integer value such that
2B < < LCM((p-1), (¢-1)), and

b. 1=ed mod LCM((p-1), (¢-1)). (That is, d = " mod (LCM((p-1), (¢-1))).

In the extremely rare event that d < 2" then new values for p, ¢, and d shall be determined
and a different value of e may be used.

41

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

To generate key pairs meeting the above requirements see [3].

6.2.2 Formats

Note that the RSA private key may be expressed in several formats. The basic format of the RSA
private key consists of the modulus 7 and a private key exponent d that depends on »n and the
public key exponent e; this format is used throughout this Recommendation. The other two
formats may be used in implementations but may require appropriate modifications for correct
implementation. To facilitate implementation testing, the private key shall be one of the
following:

1. The basic format: (n, d).
2. The prime factor format: (p, ¢, d).

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP =
dmod (p— 1), dO =d mod (¢ — 1), and gInv= ¢ ' mod p.

Key pair generators and key pair validation methods are given for each of these formats in
Section 6.3.

6.2.3 Parameter Length Sets

Federal Government entities shall select a target security strength for the scheme of either 80
bits or 112 bits and select scheme parameters from the target security strength as shown in Table
1. The target security strength shall be selected based on the security needs of the information
that will be protected using the keying material agreed upon using this Recommendation. SP
800-57 [7] deprecates the use of the 80 bit security strength after 2010. Entities shall select a
target security strength of 112 bits if the security life of the information extends beyond 2010.
This Recommendation specifies two choices for the modulus bit length: 1024 and 2048 bits. The
security strength of the modulus bit length shall meet or exceed that of the target security
strength of the scheme. See the comparable strengths table in SP 800-57 to assess the
comparable security strength of a particular modulus bit length.

Implementations which include a hash function (e.g. for use in a key derivation function or RSA-
OAEP) shall select any approved hash function.

Implementations which include a MAC algorithm (e.g. for key confirmation) shall employ an
approved MAC algorithm. The MacKey length shall meet or exceed the target security
strength, and should meet or exceed the security strength of the modulus. The MacTag length
shall meet or exceed 64 bits (8 bytes).

For example, an entity may select the 112 bit target security strength for an application which
establishes a 128 bit AES key. An implementation for the scheme may select 2048 bits, SHA-
256, and HMAC-SHA-256 for the modulus length, hash function and MAC algorithm, along
with MacTag and MacKey lengths of 64 bits and 128 bits, respectively.

42

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
Table 1: IFC Parameters for Key Establishment

Target Security Strength
IFC Parameter Name

80 bits 112 bits

Bit length of n 1024 bits 2048 bits
or
2048 bits

Minimum MacKey length 80 bits/10 bytes | 112 bits/14 bytes
Minimum MacTag length 64 bits/8 bytes 64 bits/8 bytes

6.3 RSA Key Pair Generators

An RSA key pair generator produces a random RSA public-key/private-key pair at a target
security strength, given an appropriate RSA key length and possibly other inputs. A key pair
generator requires a random bit generator (RBG) and a prime number generator. Approved
prime number generators may place additional constraints on RSA key pair generation,
depending on the target security strength (see FIPS 186-3 [3]). Approved RSA key pair
generators shall be employed. For key pair criteria, see Section 6.2.1.

6.3.1 RSAKPG1 Family: RSA Key Pair Generation with a Fixed Public Exponent

The RSAKPGI family consists of three RSA key pair generators where the public exponent has
a fixed value (see Section 6.2).

Three representations are addressed:

1. rsakpgl-basic generates the private key in the basic format (n, d),
2. rsakpgl-prime-factor generates the private key in the prime factor format (p, ¢, d), and

3. rsakpgl-crt generates the private key in the Chinese Remainder Theorem format (n, e, d,
P> 4, dP, dQ, glnv).

An implementation may perform a key pair validation before outputting the key pair from the
generator. The key pair validation methods for this family are specified in Section 6.4.1.2.

6.3.1.1 rsakpgl-basic

rsakpgl-basic is the generator in the RSAKPG1 family where the private key is in the basic
format (n, d).

43

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
Function call: rsakpgl-basic(s, nBits, e)
Input:
1. s: the target security strength for the key-pair generator, an integer in the set {80, 112},

2. nBits: the intended length in bits of the RSA modulus, an integer (see Table 1), and
3. e: afixed public exponent, an odd integer such that 65,537 < e < 2%°°.
Output:

1. (m, e): the RSA public key, and

2. (n, d): the RSA private key in the basic format.
Error: Indications of the following:

1. The security strength is out of range,

2. The modulus length is out of range,

3. The fixed public exponent is out of range, or

4. Pair-wise consistency failure.

Process:

1. Check the ranges:

a. Ifsisnotan integer in the set {80, 112}, output an indication that the security
strength is out of range and stop.

b. If nBits is not an integer in the set {1024, 2048}, or if nBits is less than the
minimum key length for the target security strength, s, output an indication
that the modulus length is out of range and stop.

c. Ifeisnotan odd integer such that 65,537 < e < 2*°°, output an indication that
the exponent is out of range and stop.

2. Generate the prime factors p and ¢ (see Section 5.4).

3. Determine the private exponent d:
d=e¢'mod LCM(p—1,q-1).
In the very rare event that d < 2 "®™ discard d, and repeat the process, starting at step 2.

4. Determine the modulusnasn=p - q.

44

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

5. Perform a pair-wise consistency test by verifying that & = (k)" mod n for some integer k
satistfying 1 <k < n. If an inconsistency is found, output an indication of a pair-wise
consistency failure and stop.

6. Output (n, e) as the public key, and (n, d) as the private key.

Note that key pair validation as specified in Section 6.4.1.2.1 can be performed after step 5 and
before step 6. If an error is detected, output an indication of key pair validation failure and stop.

6.3.1.2 rsakpgl-prime-factor

rsakpgl-prime-factor is the generator in the RSAKPGI1 family where the private key is in the
prime factor format (p, g, d).

Function call: rsakpgl-prime-factor(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpgl-basic (see 6.3.1.1), except that the
private key is in the prime factor format: (p, ¢, d).

The steps are the same as in rsakpgl-basic, except that processing Step 6 is replaced by the
following:

6. Output (n, e) as the public key, and (p, ¢, d) as the private key.

Note that key pair validation as specified in Section 6.4.1.2.2 can be performed after step 5 and
before step 6. If an error is detected, output an indication of key pair validation failure and stop.

6.3.1.3 rsakpgl-crt

rsakpgl-crt is the generator in the RSAKPGI family where the private key is in the Chinese
Remainder Theorem format (n, e, d, p, q, dP, dQ, qlnv).

Function call: rsakpgl-cri(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpgl-basic (see 6.3.1.1), except that the
private key is in the Chinese Remainder Theorem format: (n, e, d, p, g, dP, dQ, qlnv).

The steps are the same as in rsakpgl-basic, except that processing Steps 5 and 6 are replaced by
the following:

5. Determine the components dP, dQ and glnv:
a. dP=dmod (p-1).
b. dQ=dmod (q—-1).
c. glnv=q "' modp.

6. Perform a pair-wise consistency test by verifying that & = ()’ mod n for some integer &
satisfying 1 < k£ <n. If an inconsistency is found, output an indication of a pair-wise
consistency failure and stop.

45

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
7. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qlnv) as the private key.

Note that key pair validation as specified in Section 6.4.1.2.3 can be performed after step 6 and
before step 7. If an error is detected, output an indication of key pair validation failure and stop

6.3.2 RSAKPG2 Family: RSA key pair generation with a random public exponent

The RSAKPG2 family consists of three RSA key pair generators where the public exponent e is
a random value in the range 65,537 <e <2%°.

This family imposes the same constraints on the key pair as in the RSAKPGI family (see Section
6.3.1).

Three representations are addressed:
1. rsakpg2-basic generates the private key in the basic format (n, d),

2. rsakpg2-prime-factor generates the private key in the prime factor format (p, ¢, d), and

3. rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d,
p, q,dP, dQ, qlnv).

An implementation may perform a key pair validation before outputting the key pair from the
generation function. The key pair validation methods for this family are specified in Section
6.4.1.3.

6.3.2.1 rsakpg2-basic

rsakpg2-basic is the generator in the RSAKPG2 family where the private key is in the basic
format (n, d).

Function call: rsakpg2-basic(s, nBits, eBits)
Input:

1. s: the target security strength for the key-pair generator (see Sections 6.2.1 and 6.2.3), an
integer in the set {80, 112},

2. nBits: the intended length in bits of the RSA modulus, an integer (see Table 1), and

3. eBits: the intended length in bits of the public exponent, an integer such that 17 < eBits <
256.

Output:
1. (n, e): the RSA public key, and

2. (n, d): the RSA private key in the basic format.

46

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Error: Indications of the following:
1. The security strength is out of range,
2. The modulus length is out of range,
3. The exponent length is out of range, or
4. Pair-wise consistency failure.

Process:

1. Check the ranges:

a. If s is not an integer in the set {80, 112}, output an indication that the security
strength is out of range and stop.

b. If nBits is not an integer in the set {1024, 2048}, or if nBits is less than the
minimum key length for the target security strength s (see Section 6.2.3),
output an indication that the modulus length is out of range and stop.

c. If eBits is not an integer such that 17 < eBits < 256, output an indication that
the exponent length is out of range and stop.

2. Generate an odd public exponent e in the range [2 <™ ~ ' + 1, 2 “*® _ 1] using an
approved RBG (see Section 5.3).

Generate the prime factors p and ¢ (see Section 5,4).

4. Determine the private exponent d:
d=e¢'mod LCM(p—1,q-1).

5. 1In the very rare event that d < 2" discard d, and repeat the process, starting at either
step 2 or step 3 (That is, a different value of e may be used when generating a new pair
of primes, but this is not required).

6. Determine the modulusnasn=p - q.

7. Perform a pair-wise consistency test by verifying that & = (k)" mod n for some integer k
satistfying 1 <k < n. If an inconsistency is found, output an indication of a pair-wise
consistency failure and stop.

8. Output (n, e) as the public key, and (n, d) as the private key.

Note that key pair validation as specified in Section 6.4.1.3.1 can be performed after step 7 and
before step 8. If an error is detected, output an indication of key pair validation failure and stop.

47

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography

December, 2008
6.3.2.2 rsakpg2-prime-factor

rsakpg2-prime-factor is the generator in the RSAKPG2 family where the private key is in the
prime factor format (p, g, d).

Function call: rsakpg2-prime-factor(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see 6.3.2.1), except that the
private key is in the prime factor format:

(p, q, d): RSA private key in prime factor format

The steps are the same as in rsakpg2-basic except that processing Step 8 is replaced by the
following:

8. Output (n, e) as the public key, and (p, g, d) as the private key.

Note that key pair validation as specified in Section 6.4.1.3.2 can be performed after step 7 and
before step 8. If an error is detected, output an indication of key pair validation failure and stop.

6.3.2.3 rsakpg2-crt

rsakpg2-crt is the generator in the RSAKPG2 family where the private key is in the Chinese
Remainder Theorem format (n, e, d, p, q, dP, dQ, qinv).

Function call: rsakpg2-cri(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see 6.3.2.1), except that the
private key is in the Chinese Remainder Theorem format:

(n, e, d,p, q,dP, dQ, gInv): RSA private key in Chinese Remainder Theorem format.

The steps are the same as in rsakpg2-basic except that processing Steps 7 and 8 are replaced by
the following:

7. Determine the components dP, dQ and glnv:

a. dP=dmod (p-1).
b. dQ=dmod (q-1).
c. qglnv=q modp.

8. Perform a pair-wise consistency test by verifying that & = (k)” mod n for some integer k
satistfying 1 <k < n. If an inconsistency is found, output an indication of a pair-wise
consistency failure and stop.

9. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key pair validation as specified in Section 6.4.1.3.3 can be performed after step 8 and
before step 9. If an error is detected, output an indication of key pair validation failure and stop.

48

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
6.4 Assurances of Validity

Secure key establishment depends on the validity of the keys. To explain the assurance
requirements, some terminology needs to be defined. The owner of a key pair is the entity that is
authorized to use the private key that corresponds to the owner’s public key, whether or not the
owner generated the key pair. The recipient of a public key is the entity that is participating in a
key establishment transaction with the owner and obtains the owner’s public key before or
during the current transaction.

6.4.1 Assurance of Key Pair Validity

Assurance of key pair validity provides assurance that a key pair was generated in accordance
with the requirements of Section 6.2 and Section 6.3. Key pair validity implies public-key
validity and assurance of possession of the correct private key. Assurance of key pair validity can
only be provided by an entity that has the private key (e.g., the owner). The owner shall have
assurance of key pair validity before using the key pair for other operations.

6.4.1.1 General Method for Obtaining Assurance of Key Pair Validity
Assurance of key pair validity shall be obtained by its owner using (all of) the following steps.

1. Key pair generation: Assurance that the key pair has been correctly formed, in a manner
consistent with the criteria of Section 6.2, is obtained using one of the following two
methods:

a. Owner generation — The owner receives the desired assurance if it generates the
public/private key pair as specified in Section 6.3.

b. TTP generation — The owner receives the desired assurance when a trusted third
party (TTP) that is trusted by the owner generates the public/private key pair as
specified in Section 6.3 and provides it to the owner.

2. The owner shall perform a pair-wise consistency test by verifying that k = (k)¢ mod n for
some integer k satisfying 1 < k < n. Note that if the owner generated the key pair (see step
1.a above), an initial pair-wise consistency test was performed during key generation (see
Section 6.3). Otherwise, the owner shall perform the consistency check separately, prior
to the first use of the key pair in a key establishment transaction (see Section 4.1).
Additional pair-wise consistency tests shall be performed by the owner whenever
assurance of key pair validity needs to be refreshed.

3. Key pair validation: A key pair shall be validated using one of the following two
methods:

a. Owner key pair validation — The owner either performs a successful key pair
validation during key pair generation (see Section 6.3), or performs a successful
key pair validation separate from key pair generation (see Sections 6.4.1.2 and
6.4.1.3).

49

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

b. TTP key pair validation — A trusted third party (trusted by the owner) either
performs a successful key pair validation during key pair generation (see Section
6.3), or performs a successful key pair validation separate from key pair
generation (see Sections 6.4.1.2 and 6.4.1.3), and indicates the success to the
owner. Note that if the key pair validation is performed separately from the key
pair generation, and the TTP does not have the key pair, then the party that
generated the key pair or owns the key pair must provide it to the TTP.

A key pair validation shall be performed prior to the first use of the key pair in a key
establishment transaction (see Section 4.1). The key pair can be revalidated at any time. Note
that the use of a TTP to generate a key pair or to perform key pair validation for an owner means
that the TTP is trusted (by both the owner and any recipient) to not use the owner’s private key
to masquerade as the owner or otherwise compromise the key establishment transaction.

6.4.1.2 RSAKPV1 Family: RSA Key Pair Validation with a Fixed Exponent

The RSAKPV1 family of key pair validation methods corresponds to the RSAKPG1 family (see
Section 6.3.1).

6.4.1.2.1 rsakpvl-basic

rsakpvI-basic is the validation method corresponding to rsakpg!-basic (see Section 6.3.1.1).
Function call: rsakpvi-basic (s, nBits, efixed, (Fpub, €pub) (Mpriv, d))

Input:

1. s: the target security strength for the key-pair generator (see Section 6.2.3), an integer in
the set {80, 112},

2. nBits: the expected length in bits of the RSA modulus, an integer (see Table 1),
3. erixed: the intended fixed public exponent, an odd integer such that 65,537 < efixed < 2256,
4. (npu, epup): the RSA public key to be validated, and
5. (npriv, d): the RSA private key to be validated in the basic format.
Output:

1. status: An indication that the key pair is valid or an indication of an error:

a. The security strength is out of range,
b. The modulus length is out of range,
c. The fixed exponent is out of range, or
d. The request is invalid.

Process:

50

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
1. Check the ranges:

a. Ifs is not an integer in the set {80, 112}, output an indication that the security
strength is out of range and stop.

b. If nBits is not an integer in the set {1024, 2048}, or if nBits is less than the
minimum key length for the target security strength s (see [7]), output an
indication that the modulus length is out of range and stop.

c. If efixea 1s not an odd integer such that 65,537 < efiveq < 223 output an indication
that the fixed exponent is out of range and stop.

2. Compare the public exponents:

If epub # erixed, OUtput an indication that the request is invalid and stop.
3. Check the modulus:

a. If npu # npriv, output an indication of an invalid key pair and stop.

b. Ifthe length in bits of the modulus np, is not nBits, output an indication of an
invalid key pair and stop.

4. Prime factor recovery:

a. Recover the prime factors p and ¢ from the modulus 7, the public exponent
epub and the private exponent d (see Appendix C):

(p,) = RecoverPrimeFactors (npub, €pub, 4)

b. If RecoverPrimeFactors outputs an indication that the prime factors were not
found, output an indication that the request is invalid and stop.

c. Ifnpw #p - g, then output an indication that the request is invalid and stop.
5. Check the prime factors:
a. Apply an approved primality test to test the prime number p (see Section 5.5).

b. If the primality test indicates that p is not prime, output an invalid key pair and
stop.

c. If(p<~[2(2"B2=1)) or (p > 2 "5 _ 1), output an indication of an invalid key
pair and stop.

d. If GCD (p -1, epup) # 1, output an indication of an invalid key pair and stop.
e. Apply an approved primality test to test the prime number ¢ (see Section 5.5).

f. If the primality test indicates that ¢ is not prime, output an indication of an invalid
key pair and stop.

51

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

g. If (g <[22 "®*2=1)) or (¢ > 2 "¥™” _ 1), output an indication of an invalid key
pair and stop.

h. If GCD (g — 1, epuw) # 1, output an indication of an invalid key pair and stop.
i. If|p—gq| <2271 output an indication of an invalid key pair and stop.
6. Check that the private exponent d satisfies
a. 2" <d<LCM (p—-1,q9-1).
and
b. 1=(depw) mod LCM (p—1,g—1).
If either check fails, output an indication of an invalid key pair and stop.
7. Output an indication that the key pair is valid.

6.4.1.2.2 rsakpvl-prime-factor

rsakpvi-prime-factor is the validation method corresponding to rsakpgl-prime-factor (see
6.3.1.2).

Function call: rsakpvi-prime-factor (s, nBits, efixed, (Mpubs €pub), (P g, d))

The inputs, outputs and errors are the same as in rsakpvI-basic (see Section 6.4.1.2.1), except
that the private key is in the prime factor format:

®, g, d)
The steps are the same as in rsakpvI-basic except that in processing:
1. Step 3 is replaced by the following:
3. Check the modulus:
a. Ifnpy # p - g, output an indication of an invalid key pair and stop.

b. If the length in bits of the modulus 7, is not nBits, output an indication of
an invalid key pair and stop.

2. Step 4 (prime factor recovery) is omitted.
6.4.1.2.3 rsakpvl-crt
rsakpvi-crt is the validation method corresponding to rsakpgl-crt.
Function call: rsakpvi-crt (s, nBits, efixed, (Fpubs €pub)s (Pprivs €privs d, P 4, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpvI-basic (see Section 6.4.1.2.1), except
that the private key is in the Chinese Remainder Theorem format:

(npriw €priv, d: P> 9, dP, an q[l’l\/’)

52

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
The steps are the same as in rsakpvi-basic except that in processing:

1. Step 2 is replaced by the following:

2. Compare the public exponents:

If epub # efixed O €pub # €priv, OUtput an indication of an invalid key pair and stop.

2. Step 3 is replaced by

3. Check the modulus:

a. Ifny #p - q, or npuy # Npriy, output an indication of an invalid key pair and
stop.

b. If the length in bits of the modulus 7y, is not nBits, output an indication of
an invalid key pair and stop.

3. Step 4 (prime factor recovery) is omitted,
4. Step 7 is replaced by the following:
7. Check the CRT components: Check that the components dP, dQ and glnv satisfy
a. 1<dP< (p-1).
b. 1<dQ<(g-1).
c. I<gmv<p.
d. (dP: efixed) - 1 =0 mod (p — 1).

e. (dQO - efixed) -1 =0mod (g — 1).

=

(glnv-gq)-1=0modp .

If any of the criteria are not met, output an indication of an invalid key pair and
stop.
8. Output an indication that the key pair is valid.

6.4.1.3 RSAKPV2 Family: RSA Key Pair Validation with a Random Exponent

The RSAKPV?2 family of key pair validation methods corresponds to RSAKPG2 family (see
Section 6.3.2).

6.4.1.3.1 rsakpv2-basic
rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1).

Function call: rsapkv2-basic (s, nBits, eBits, (Nyup, €), (Npriv, d))

53

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
The method is the same as the rsapkvi-basic method in Section 6.4.1.2 except that:

1. The epsreq input parameter becomes eBits, which is the expected length in bits of the
public exponent, an integer such that 17 < eBits < 2*°°.

2. Step lc is replaced by:

c. If(eBits < 17) or (eBits > 256), output an indication that the exponent is out of
range and stop.

3. Step 2 is replaced by:
2. Check the public exponent.

If the public exponent e, is not odd, or if the length in bits of the public
exponent e, 1s not eBits, output an indication of an invalid key pair and stop.

6.4.1.3.2 rsakpv2-prime-factor

rsakpv2-prime-factor is the validation method corresponding to rsakpg2-prime-factor (see
Section 6.3.2.2).

Function call: rsakpv2-prime-factor (s, nBits, eBits, (Hpub, €pw), (P, ¢, d))

The inputs, outputs and errors are the same as in rsakpv2-basic (see Section 6.4.1.3.1), except
that the private key is in the prime factor format:

®, ¢, 4d)
The steps are the same as in rsakpv2-basic except that in processing:
1. Step 3 is replaced by the following:
3. Check the modulus:
a. Ifnpy #p - g, output an indication of an invalid key pair and stop.

b. If the length in bits of the modulus 7,,; is not nBits, output an indication of
an invalid key pair and stop.

2. Step 4 (prime factor recovery) is omitted.
6.4.1.3.3 rsakpv2-crt
rsakpv2-crt is the validation method corresponding to rsakpg2-crt (see Section 6.3.1.3).
Function call: rsakpv2-crt (s, nBits, eBits, (Npuw, €pub), (Mpriv, €privs d, P, q, AP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv2-basic (see Section 6.4.1.3.1), except
that the private key is in the Chinese Remainder Theorem format:

(npriw epriVa d) pa q; dp, dQ’ qlnv)

The steps are the same as in rsakpv2-basic except that in processing:

54

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

1. Step 2 is replaced by the following:

2. Compare the public exponents:

If (epub # €priv) OF (epub is not odd) or (e, 1s not eBits), output an indication of an
invalid key pair and stop.

2. Step 3 is replaced by
3. Check the modulus:

a.

If (npup # pq) oOr (Npub # Npriv) output an indication of an invalid key pair and
stop.

If the length in bits of the modulus 7, 1S not nBits, output an indication of
an invalid key pair and stop.

3. Step 4 (prime factor recovery) is omitted,

4. Step 7 is replaced by the following:

7. Check the CRT components: Check that the components dP, dQ and glnv satisfy

a.

b.

€.

f.

1<dP< (p—-1).
1 <dQ<(qg-1).
I <glnv< p.

1 =(dP - epwy) mod (p — 1).
1 =(dQ - epw) mod (g — 1).

1 =(gInv - q) mod p.

If any of the criteria are not met, output an indication of an invalid key pair and

stop.

8. Output an indication that the key pair is valid.

6.4.2 Recipient Assurances of Public Key Validity

In this Recommendation, the recipient of a public key is an entity that does not (and should not)
have access to the associated private key. The recipient of a candidate public key shall have
assurance of the arithmetic validity of that key before using it in a key establishment transaction

with its owner.

6.4.2.1 General Method for Obtaining Assurance of Public Key Validity
The recipient shall obtain assurance of public key validity using one or more of the following

methods:

55

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

1. Recipient Partial Public Key Validation - The recipient performs a successful partial
public key validation (see Section 6.4.2.2).

2. TTP Partial Public Key Validation — The recipient receives assurance that a trusted third
party (trusted by the recipient) has performed a successful partial public key validation
(see Section 6.4.2.2).

3. TTP Key Pair Validation — The recipient receives assurance that a trusted third party
(trusted by the recipient and the owner) has performed key pair validation in accordance
with Section 6.4.1.1 (step 3.b).

Note that the use of a TTP to perform key pair validation (method 3) implies that both the owner
and any recipient of the public key trust that the TTP will not use the owner’s private key to
masquerade as the owner or otherwise compromise the key establishment transaction.

6.4.2.2 Partial Public Key Validation for RSA

Partial public key validation for RSA consists of conducting plausibility tests. These tests
determine whether the public modulus and public exponent are plausible, not necessarily
whether they are completely valid, i.e., they may not conform to all RSA key generation
requirements as specified in this Recommendation. Plausibility tests can detect unintentional
errors with a reasonable probability. Note that full RSA public key validation is not specified in
this Recommendation, as it is an area of research. Therefore, if an application requires assurance
of full public key validation, then another approved key establishment method shall be used.

Plausibility tests shall include the tests specified in SP 800-89, Section 5.3.3 with the caveat that
the length of the modulus shall be a length that is specified in this Recommendation.

6.5 Assurances of Private Key Possession

The security of key agreement schemes that use key pairs depends on limiting knowledge of the
private keys to those who have been authorized to access them (e.g., their respective owners or
certain trusted third parties). In addition to preventing unauthorized entities from gaining access
to private keys, it is also important to obtain assurance that authorized owners actually have
access to their correct private keys.

Assurance of possession requirements for the owner of a private key are specified in Section
6.5.1. Parties that interact with the owner (e.g., a public key recipient) also need to obtain
assurance that the owner possesses the private key; these requirements are specified in Section
6.5.2.

When assurance of possession of a private key is initially obtained, the assurance of the validity
of the associated public key shall be obtained either prior to or concurrently with obtaining
assurance of possession. Note that as time passes, an owner could lose possession of the
associated private key, deliberately or due to an error; for this reason, renewing the assurance of
possession may be appropriate for some applications (i.e., assurance of possession can be
refreshed). See Section 6.5.2.2 and Section 6.6 for a discussion of the methods that may be used
by the recipient of a public key to renew the assurance of the owner’s possession of the

56

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

corresponding private key. A discussion of the effect of time on the assurance of private key
possession is provided in SP 800-89.

6.5.1 Owner Assurance of Private Key Possession

The owner of a public key shall have assurance that the owner actually possesses the correct
associated private key in one or more of the following ways:

1. Owner Receives Assurance via Key Generation - The act of generating a key pair, as
specified in this document, is a way for the owner to obtain assurance of possession of
the correct private key. This method allows an owner who protects his/her own keys to
have assurance of possession without additional computation.

2. Owner Receives Assurance via Assurance of Key Pair Validity — The owner obtains
assurance of key pair validity (See section 6.4.1) thereby also obtaining owner assurance
of private key possession.

3. Owner Receives Assurance via Explicit Key Confirmation — The owner employs the key
pair to successfully engage another party in a key agreement transaction using a scheme
from the KAS2 family that incorporates explicit key confirmation. The key confirmation
shall be performed with the owner as key confirmation recipient in order to obtain
assurance that the private key functions correctly. See Section 6.6 for further
explanation.

4. Owner Receives Assurance via an Encrypted Certificate - The owner uses the private key
while engaging in a key establishment transaction with a Certificate Authority (trusted by
the owner), after providing the CA with the corresponding public key. As part of this
transaction, the CA generates a (new) certificate containing the owner’s public key and
encrypts that certificate using (some portion of) the symmetric keying material that has
been established. Only the encrypted form of the certificate is provided to the owner. By
successfully decrypting the certificate and verifying the CA’s signature, the owner
obtains assurance of possession of the correct private key (at the time of the key
establishment transaction).

The owner of a public key (or agents trusted to act on the owner’s behalf) should determine that
the method used for obtaining assurance of the owner’s possession of the correct private key is
sufficient and appropriate to meet the security requirements of the owner’s intended
application(s)

6.5.2 Recipient Assurance of Owner’s Possession of a Private Key

It is assumed that, at the time of binding an identifier to the owner’s public key, the binding
authority has obtained assurance that the owner is in possession of the correct private key. In
conjunction with a (successful) key establishment transaction, the recipient of another party’s
public key shall also obtain this assurance — either indirectly using a trusted third party (see
Section 6.5.2.1) or directly from the claimed owner (see Section 6.5.2.2) - before using the
established keying material for purposes beyond those required during the key establishment
transaction itself.

57

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

When two parties engage in a key establishment transaction, there is (at least) an implicit claim
of ownership made whenever a public key is provided on behalf of a particular party. That party
is considered to be a claimed owner of the corresponding key pair — as opposed to being a true
owner — until adequate assurance can be provided that the party is actually the one in possession
of the private key (See Section 6.7).

The recipient of a public key (or agents trusted to act on the recipient’s behalf) should determine
that the method used for obtaining assurance of the owner’s possession of the correct private key
is sufficient and appropriate to meet the security requirements of the owner’s intended
application(s).

6.5.2.1 Recipient Indirectly Obtains Assurance of Possession Using a Trusted
Third Party

The recipient of a public key may indirectly receive assurance that its owner is in possession of
the correct private key using a trusted third party, either before or during a key establishment
transaction that makes use of that public key. The methods used by a third party trusted by the
recipient to obtain that assurance are beyond the scope of this Recommendation (see, however,
Section 6.5.2.2 of this Recommendation and Section 8.1.5.1.1.2 of SP 800-57 Part 1 [7] for
possible methods). The recipient of a public key (or agents trusted to act on behalf of the
recipient) should know the method(s) used by the third party, in order to determine that the
assurance obtained on behalf of the recipient is sufficient and appropriate to meet the security
requirements of the recipient’s intended application(s).

6.5.2.2 Recipient Obtains Assurance of Possession Directly from the Claimed
Owner

The recipient of a public key can directly obtain assurance of the claimed owner’s current
possession of the corresponding private key by successfully completing a key establishment
transaction that explicitly incorporates key confirmation as specified in Sections 8.2.3, 8.3.3,
9.2.4, or 9.3.4 with the claimed owner serving as the key confirmation provider. Note that the
recipient of the public key in question will also be the key confirmation recipient. (See Section
6.6 for further explanation.) Also note that this use of key confirmation is an additional benefit
beyond its use to confirm that two parties possess the same keying material.

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine
whether or not using one of the key establishment schemes in this Recommendation to obtain
assurance of possession through key confirmation is sufficient and appropriate to meet the
security requirements of the recipient’s intended application(s). Other approved methods (e.g.
Section 5.4.4 of SP800-57 Part 1) of directly obtaining this assurance of possession from the
owner are also allowed. If obtaining assurance of possession directly from the owner is not
acceptable, then assurance of possession shall be obtained indirectly as discussed in Section
6.5.2.1.

Successful key confirmation (performed in the context described in this Recommendation)
demonstrates that the correct private key has been used in the key confirmation provider’s
calculations, and thus also provides assurance that the claimed owner is the true owner

58

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

The assurance of possession may be useful even when the recipient has previously obtained
independent assurance that the claimed owner of a public key is indeed its true owner. This may
be appropriate in situations where the recipient desires renewed assurance that the owner
possesses the correct private key (and that the owner is still able to use it correctly), including
situations where there is no access to a trusted party who can provide renewed assurance of the
owner’s continued possession of the private key.

Note that the requirement that assurance of possession be obtained before using the established
keying material for purposes beyond those of the key establishment transaction itself does not
prohibit the parties to a key establishment transaction from using a portion of the derived or
transported keying material during the key establishment transaction, for purposes required by
that key establishment scheme. For example, in a transaction involving a key agreement scheme
that incorporates key confirmation, the parties establish a (purported) shared secret, derive
keying material, and — as part of that same transaction — use a portion of the derived keying
material as the MacKey in their key confirmation computations.

6.6 Key Confirmation

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the key
confirmation recipient) that another party (the key confirmation provider) is in possession of a
(supposedly) shared secret and/or the correct version of keying material that was derived or
transported during a key establishment transaction. (Correct from the perspective of the key
confirmation recipient.) Such actions are said to provide unilateral key confirmation when they
provide this assurance to only one of the participants in a key establishment transaction; the
actions are said to provide bilateral key confirmation when this assurance is provided to both
participants (that is, unilateral key confirmation is provided in both directions).

Oftentimes, key confirmation is provided implicitly by some means outside of the key
establishment scheme (for example, by decrypting an encrypted message sent from the other
party using a symmetric key that was derived, in part, from a “master secret” determined during
the key establishment transaction), but this is not always the case. Some schemes in the
Recommendation include the exchange of explicit key confirmation information in order to
enhance the scheme’s security properties.

In this Recommendation, key confirmation can be provided only if the provider owns a key-
establishment pair that is used during key establishment. Each family of key agreement schemes
specified in this Recommendation includes a scheme that incorporates unilateral key
confirmation provided by the responder to the initiator. Similarly, each family of key transport
schemes specified in this Recommendation includes a scheme that incorporates unilateral key
confirmation provided by the receiver to the sender. The KAS2 family of key agreement
schemes also includes a scheme incorporating unilateral key confirmation provided by the
initiator to the responder, and a scheme incorporating bilateral key confirmation.

In each scheme that includes key confirmation, the following steps shall be performed:

1. The KC recipient sends unpredictable secret data to the KC provider encrypted using the
provider’s public key to produce (ephemeral) ciphertext.

59

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

2. The KC provider uses its private key to decrypt the ciphertext before obtaining (or
deriving) a MacKey that is randomly generated for each transaction, and known only to
the parties engaged in that transaction.

3. This MacKey and certain transaction-specific MacData (which includes the parties’
identifiers as well as ephemeral data that has been exchanged between the parties) are
used by the KC provider as input to an approved MAC algorithm to obtain a MacTag
whose value is (for all practical purposes) unique to the transaction. The MacTag value is
then sent to the KC recipient. (See Sections 5.2, 5.9, 6.2, 8 and 9 for details.

4. The KC recipient performs an independent computation of the MacTag. If the MacTag
value computed by the KC recipient matches the MacTag value received from the KC
provider, then key confirmation is successful, and the KC recipient obtains assurance that
both parties contemporaneously agree on the values of the MacKey and MacData, and
that they have successfully established a shared secret and/or keying material. The
MacKey employed during the transaction shall be zeroized after its use. The MacKey
shall not be used for purposes other than key confirmation or implementation validation
testing. (See Sections 5.2, 5.9, 6.2, 8 and 9 for details).

A close examination of the KC process shows that any of the six key establishment schemes
specified in this Recommendation that incorporate key confirmation can be used to provide the
KC recipient with assurance that the KC provider is currently in possession of the (correct)
private key — the one corresponding to the KC provider’s public key-establishment key.

The transaction-specific values of both the MacKey and MacData prevent (for all practical
purposes) the replay of any previously computed value of MacTag. The receipt of a correctly
computed MacTag, coupled with the presumed inability of the KC provider (or others) to predict
the values of either the MacKey or the secret data that was encrypted with the KC provider’s
public key, provides assurance to the KC recipient that the KC provider has used the correct
private key during the current transaction — to successfully recover the secret data that is a
prerequisite to learning the value of the MacKey.

The three key-agreement schemes in the KAS2 family that incorporate key confirmation can also
be used to provide assurance to the KC recipient that it is in possession of the correct value of the
private key corresponding to its own public key-agreement key. In each of these schemes, the
KC recipient receives an unpredictable secret value from the KC provider that has been
encrypted using the KC recipient’s public key to form (ephemeral) ciphertext. The KC recipient
uses its private key to decrypt this ciphertext, and includes the recovered shared secret as part of
the input to the KDF when deriving the MacKey described above. (See Section 8.3.) If the KC
recipient used an incorrect value for its private key, it is highly likely that it would not recover
the correct version of that shared secret, and as a result, would incorrectly compute both the
MacKey and MacTag. Therefore, if the MacTag value computed by the KC recipient in a KAS2
scheme matches the MacTag value received from the KC provider, then — in addition to the other
types of assurance described above — the KC recipient obtains assurance that it has used the
correct private key during the current transaction to successfully recover the secret value sent by
the KC provider.

60

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

In order to assert that key confirmation is performed in compliance with this Recommendation,
key confirmation shall be incorporated into a key establishment scheme as specified in this
Recommendation. If any other methods are used to provide key confirmation, this
Recommendation makes no statement as to their adequacy.

6.6.1 Unilateral Key Confirmation for Key Establishment Schemes

As specified in this Recommendation, unilateral key confirmation occurs when one participant in
a key establishment scheme (the “provider”) successfully provides assurance to the other
participant (the “recipient”) that both the provider and the recipient have computed the same
secret MacKey during a key establishment transaction. This MacKey is either 1) derived from a
shared secret determined during a key agreement transaction, or 2) included in the secret keying
material shared by both the provider and the recipient during a key transport transaction. In this
Recommendation, the inclusion of key confirmation in a scheme is restricted to cases where the
key confirmation provider owns a key-establishment key pair that is used during the
establishment transaction.

As a necessary part of the process of providing/obtaining unilateral key confirmation, the
following steps shall be incorporated into a key establishment scheme. (Depending upon the
particular key establishment scheme, additional steps may also be required. Details will be
provided for each scheme.) Note that the provider may be either the scheme initiator/sender
(party U) or the scheme responder/receiver (party V), as long as the provider is using a key-
establishment key pair in the key establishment scheme, and the recipient is the other party.

1. The provider computes
MacDatap = message_stringp|| IDp || IDr || EphemDatap || EphemDatag {|| Text}
where

message stringp 1s a six byte string with a value of “KC 1 U” or “KC 1 V”, depending
on whether U or V is providing the MacTag. Note that these values will differ for
bilateral key confirmation as specified in Section 6.6.2.

IDp is the identifier of the provider.
1Dy 1s the identifier of the recipient.

EphemDatap and EphemDatar are ciphertext values or nonces contributed by the
provider and recipient, respectively. These values are specified in the sections describing
the schemes that include key confirmation. EphemDatap is null in the key transport cases.

Text is an optional byte string that may be used during key confirmation and that is known
by the parties establishing the secret keying material.

2. In the case of a key agreement scheme: After computing the shared secret and applying
the key derivation function to obtain the DerivedKeyingMaterial (see Section 5.9), the
provider parses DerivedKeyingMaterial into two parts, the MacKey and the KeyData:

MacKey || KeyData = DerivedKeyingMaterial.

61

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

In the case of a key transport scheme, the provider parses the TransportedKeyingMaterial
into the same two parts:

MacKey || KeyData = TransportedKeyingMaterial.

3. The provider computes MacTagp (see Section 5.2.1) and sends it to the recipient:
MacTagp = MAC(MacKey, MacTagLen, MacDatap).

4. The recipient determines MacDatap, MacKey, and MacTagp in the same manner as the
provider, and then compares its computed MacTagp to the value received from the
provider. If they are equal, then the recipient is assured that the provider has used the
same value for MacKey in its computations and that the provider shares the recipient’s
value of MacDatap. The assurance of a shared value for MacKey provides additional
assurance to the recipient that:

a. For key agreement schemes: the provider shares the secret value (2) from which
MacKey and KeyData are derived (see Section 5.9). Thus, the recipient also has
assurance that the provider could compute KeyData correctly.

b. For key transport schemes: The provider has recovered all of the transported
keying material including KeyData.

5. Zeroize the MacKey once it is no longer needed for MacTag computations.

6.6.2 Bilateral Key Confirmation for Key Establishment Schemes

Bilateral key confirmation is accomplished by performing unilateral key confirmation in both
directions (with U providing MacTagy to recipient V, and V providing MacTagy to recipient U)
during the same scheme. In addition to replacing P and R by U and V (or by V and U), there are
also a few clarifications to the process described in Section 6.6.1:

1. When computing MacTagy, the value of the six-byte message stringy that forms the
initial segment of MacDatay is “KC 2 U”.

2. When computing MacTagy, the value of the six-byte message stringy that forms the
initial segment of MacDatay is “KC 2 V™.

3. Ifused at all, the value of the (optional) byte string Text used to form the final segment of
MacDatay can be different than the value of Text used to form the final segment of
MacDatay.

6.7 Authentication

Successful key confirmation, when performed as specified in this Recommendation, can supply
entity authentication with respect to the key confirmation provider; i.e., the key confirmation
recipient can obtain assurance concerning the identity of the provider.

The correct computation of MacTagp by the provider requires knowledge of the private key
corresponding to a particular public key-establishment key that has been bound to the key-pair

62

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

owner’s identifier. The recipient of a correctly computed MacTagp (correct from the recipient’s
perspective) obtains assurance that the provider is in possession of the correct private key, and
may infer that the provider is the owner of that key pair.

In addition to the security level associated with the cryptographic elements and parameters
employed during the key-establishment/key-confirmation process, the level of assurance
associated with this entity-authentication technique is dependent upon the specificity of the key-
pair owner’s identifier.

7 IFC Primitives and Operations

7.1 Encryption and Decryption Primitives

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA
cryptosystem [16]. RSAEP produces ciphertext from keying material using a public key; RSADP
recovers the keying material from the ciphertext using the corresponding private key.

7.1.1 RSAEP
RSAEP produces ciphertext from keying material using an RSA public key.
Function call: RSAEP((n, e), k)
Input:

1. (n, e): the RSA public key.

2. k: the keying material, an integer such that 1 <k <n—1.
Output:

c: the ciphertext, an integer such that 1 <c <n—1.
Errors: An indication that the keying material is out of range.
Assumption: The RSA public key is valid (see Section 6.4).
Process:

1. If the keying material & is not such that 1 <k <n — 1, output an indication that the keying
material is out of range and stop.

2. Letc=(k)“modn.
3. Output c.

7.1.2 RSADP

RSADP is the basic decryption operation. It recovers keying material from ciphertext using an
RSA private key.

Function call: RSADP((n, d), ¢)

63

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
Input:
1. (n, d): the RSA private key.

2. c: the ciphertext, such that 1 <c<n-—1.

Output:

k: the keying material, an integer such that 1 <k <n —1.

Errors: An indication that the ciphertext is out of range.
Assumption: The RSA private key is part of a valid key pair (see Section 6.4).
Process:

1. If the ciphertext c is not such that 1 <c¢ <n — 1, output an indication that the ciphertext is
out of range and stop.

2. Letk=c%modn.
3. Output £.

Note:

Care needs to be taken to ensure that an implementation of RSADP does not reveal even
partial information about the value of k. An opponent who can reliably obtain particular bits
of k for sufficiently many chosen ciphertexts may be able to obtain the full decryption of an
arbitrary ciphertext by applying the bit-security results of Histad and Naslund [17].

7.2 Encryption and Decryption Operations

7.2.1 RSA Secret Value Encapsulation (RSASVE)

Secret value encapsulation generates and encrypts a secret value to produce ciphertext using a
public key-establishment key. The recovery operation recovers the secret value (now the shared
secret) from the ciphertext using the corresponding private key-establishment key. Secret value
encapsulation employs a Random Bit Generator (RGB) to generate the secret value.

The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3,
respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations
are used by the KAS1 and KAS2 key agreement families (see Sections 8.2 and 8.3), and by the
RSA-KEM KWS key transport family (see Sections 9.3 and 7.2.3).

7.2.1.1 RSASVE Components

RSASVE requires an approved RBG (see Section 5.3). The security strength for the RBG shall
be equal to or greater than the target security strength for the schemes in which RSASVE is
employed.

64

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
1. RSAEP: RSA Encryption Primitive (see Section 7.1.1).

2. RSADP: RSA Decryption Primitive (see Section 7.1.2).

7.2.1.2 RSASVE Generate Operation

RSASVE.GENERATE generates a shared secret and corresponding ciphertext using an RSA
public key.

Function call: RSASVE.GENERATE((n, €))
Input:
(n, e): an RSA public key.

Output:
1. Z: the shared secret; a byte string of length nLen bytes.

2. C: the ciphertext; a byte string of length nLen bytes.

Assumptions: The RSA public key is part of a valid key pair.
Process:

1. Compute the value of nlen as the length in bytes of the modulus 7.
2. Generation:
a. Using the RBG (see Section 5.3), generate an nlLen byte string, Z.
b. Convert Z to an integer z (See Appendix B.2):
z=BS2I(Z, nLen).
c. Ifzdoesnotsatisfy 1 <z<n—1, then go to a.
3. RSA encryption:

a. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z
using the public key (7, e) to produce an integer ciphertext c:

c =RSAEP((n, e), z).

b. Convert the ciphertext ¢ to a ciphertext byte string C of length nlLen bytes
(see Appendix B.1):

C=12BS(c, nLen).

65

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

4. Output the string Z as the shared secret, and the ciphertext C.
7.2.1.3 RSASVE Recovery Operation
RSASVE.RECOVER recovers a shared secret from ciphertext using an RSA private key.
Function call: RSASVE.RECOVER((n, d), C)
Input:

1. (n, d): an RSA private key.

2. C: the ciphertext; a byte string of length nLen bytes.

Output:

Z: the shared secret; a byte string of length nLen bytes.
Errors: An indication of a decryption error.
Assumptions: The RSA private key is part of a valid key pair.
Process:

1. Compute the value of nLen as the length in bytes of the modulus 7.

2. Length checking:

If the length of the ciphertext C is not nLen bytes, output an indication of a decryption

error and stop.
3. RSA decryption:
a. Convert the ciphertext C to an integer ciphertext ¢ (see Appendix B.2):

¢ = BS21(C).

b. Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext

c using the private key (n, d) to produce an integer z:

z=RSADP((n, d), c) .

c. If RSADP indicates that the ciphertext is out of range, output an indication

of a decryption error and stop.

d. Convert the integer z to a byte string Z of length nLen bytes (see Appendix

B.1):

Z =12BS(z, nLen).

66

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

4. Output the string Z as the shared secret.

Note:

Care needs to be taken to ensure that an implementation does not reveal information about
the encapsulated secret value Z. For instance, the observable behavior of the I2BS routine
must not reveal even partial information about the byte string Z. An opponent who can
reliably obtain particular bits of Z for sufficiently many chosen ciphertexts may be able to
obtain the full decryption of an arbitrary RSA-encrypted value by applying the bit-security
results of Hastad and Néslund [17].

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)

RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an
approved hash function, an approved random bit generator, a mask generation function, and the
RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key transport
schemes (see Section 9.2).

In the RSA-OAEP encryption operation, a data block is constructed from the keying material to
be transported and the hash of additional input (see Section 9.1) that is shared by the sender and
the intended receiving party. A random byte string is generated, after which both the random
byte string and the data block are masked in a way that binds their values. The masked values are
used to form the plaintext that is input to the RSAEP primitive, along with the public key-
establishment key of the intended receiving party. The resulting RSAEP output further binds the
random byte string, the keying material and the hash of the additional data in the ciphertext that
is sent to the receiving party.

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s private key-
establishment key are input to the RSADP primitive, recovering the masked values as output.
The mask generating function is then used to reconstruct and remove the masks that obscure the
random byte string and the data block. After removing the masks, the receiving party can
examine the format of the recovered data, and can compare its own computation of the hash of
the additional data to the hash value contained in the unmasked data block, thus obtaining some
measure of assurance of the integrity of the recovered data — including the transported keying
material.

RSA-OAEP can process up to nlLen — 2(hLen) — 2 bytes of keying material, where nlLen is the
length of the recipient’s RSA modulus, and 4Len is the length (in bytes) of the values output by
the underlying hash function.

7.2.2.1 RSA-OAEP Components
RSA-OAEP uses the following components:

1. H: An approved hash function (see Section 5.1). hLen is used to denote the
length (in bytes) of the hash function output.

2. MGEF: The mask generation function (see Section 5.8).

67

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

3. RBG: An approved random bit generator (see Section 5.3).
4. RSAEP: RSA Encryption Primitive (see Section 7.1.1).
5. RSADP: RSA Decryption Primitive (see Section 7.1.2).

The security strength for the RBG shall be at least the target security strength for the scheme.

7.2.2.2 RSA-OAEP Encryption Operation

The RSA-OAEP.Encrypt operation produces a ciphertext from keying material and additional
input using an RSA public key as shown in Figure 4. See Section 9.1 for more information on the
additional input. Let 4Len be the length of the hash function output in bytes.

Function call: RSA-OAEP.ENCRYPT((#, e), K, A)
Input:
1. (m, e): the receiver’s RSA public key.

2. K: the keying material; a byte string of length at most nlen — 2hLen — 2.

3. A: additional input; a byte string (may be the empty string) to be cryptographically bound
to the keying material (see Section 9.1).

Output:
C: the ciphertext; a byte string of length nLen bytes.

Errors: An indication that the keying material is too long.
Assumptions: The RSA public key is valid.
Process:

1. nLen = the length of # in bytes.
2. Length checking:
a. KLen = the length of K in bytes.

b. If KLen > nLen —2hLen — 2, then output an indication that the keying material
is too long and stop.

3. OAEP encoding:
a. Apply the selected hash function to compute:

HA =H(A).

68

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

HA is a byte string of length hLen. If A4 is an empty string, then HA is the
hash value for the empty string.

b. Construct a byte string PS consisting of nlLen — KLen — 2hLen — 2 zero
bytes. The length of PS may be zero.

c. Concatenate HA, PS, a single byte with hexadecimal value of 01, and the
keying material K to form data DB of length nLen — hlLen — 1 bytes as
follows:

DB=HA| PS| 01| K,
where 01 represents a byte.

d. Using the RBG (see Section 5.3), generate a random byte string mgfSeed of
length hLen bytes.

e. Apply the mask generation function in Section 5.8 to compute:
dbMask = MGF(mgfSeed, nLen — hLen — 1).
f. Let maskedDB = DB ® dbMask.
g. Apply the mask generation function in Section 5.8 to compute:
mgfSeedMask = MGF(maskedDB, hLen).
h. Let maskedMGFSeed = mgfSeed ® mgfSeedMask.

i. Concatenate a single byte with hexadecimal value 00, maskedMGF Seed, and
maskedDB to form an encoded message EM of length nlLen bytes as follows:

EM = 00 || maskedMGFSeed || maskedDB
where 00 represents a byte.
4. RSA encryption:
a. Convert the encoded message EM to an integer em (see Appendix B.2):
em = BS2I(EM).

b. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer em
using the public key (n, e) to produce a ciphertext integer c:

¢ = RSAEP((n, e), em).

69

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

c. Convert the ciphertext integer ¢ to a ciphertext byte string C of length nLen
bytes (see Appendix B.1):

C=12BS(c, nLen).

5. Output the ciphertext C.

Figure 4: RSA-OAEP Encryption Operation

7.2.2.3 RSA-OAEP Decryption Operation

RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an
RSA private key as shown in Figure 5. Let /len be the length of the hash function output in
bytes.

Function call: RSA-OAEP.DECRYPT((n, d), C, A)
Input:
1. (n, d): the receiver’s RSA private key.

2. C: the ciphertext; a byte string.

70

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding
to the keying material is to be verified (see Section 9.1).

Output:

K: the recovered keying material, a byte string of length at most = nLen — 2hLen-2 bytes; or,

Errors: Indications of the following:

1. Erroneous input.

2. Decryption error.

Assumptions: The RSA private key is valid.

Process:

1. Initializations:

a.

b.

nLen = the length of n in bytes.

DecryptErrorFlag = False.

2. Check for erroneous input:

a.

If nLen < 2hlLen + 2, or if the length of the ciphertext C is not nlLen bytes,
output an indication of erroneous input and stop.

Convert the ciphertext byte string C to a ciphertext integer ¢
(see Section B.2):
¢ =BS2I(C)

If the ciphertext integer c is not such that 1 <c¢ <n — 1, output an indication of
erroneous input and stop.

3. RSA decryption:

a.

Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext
integer ¢ using the private key (n, d) to produce an integer em:

em = RSADP((n, d), c).

Convert the integer em to an encoded message EM, a byte string of length
nLen bytes (see Appendix B.1):

EM =12BS(em, nlLen).

4. OAEP decoding:

71

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

a. Apply the selected hash function (see Section 5.1) to compute:
HA = Hash(A).
HA is a byte string of length /#Len bytes.

b. Separate the encoded message EM into a single byte Y, a byte string
maskedMGFSeed' of length hLen bytes, and a byte string maskedDB' of
length nLen — hLen — 1 bytes as follows:

EM =Y || maskedMGFSeed' || maskedDB'.
c. Apply the mask generation function specified in Section 5.8 to compute:
mgfSeedMask' = MGF(maskedDB', hLen).
d. Let mgfSeed' = maskedMGFSeed' ® mgfSeedMask'.
e. Apply the mask generation function specified in Section 5.8 to compute:
dbMask'= MGF(mgfSeed', nLen — hLen — 1).
f. Let DB'=maskedDB' ® dbMask'.

g. Separate DB’ into a byte string H4’ of length sLen bytes and a byte string X
of length nLen — 2hLen — 1 bytes as follows:

DB'=HA'|| X.
Check for RSA-OAEP decryption errors:

a. If Yis nota 00 byte, then DecryptErrorFlag = True.
b. If HA' does not equal HA, then DecryptErrorFlag = True.

c. If Xdoes not have the form PS || 01 || K, where PS consists of zero or more
consecutive 00 bytes, then DecryptErrorFlag = True.

The type(s) of any error(s) found shall not be reported.
(See the notes below for more information.)

Output of the decryption process:

a. If DecryptErrorFlag = True then output an indication of an (unspecified)
decryption error and stop. (See the notes below for more information.)

b. Otherwise, output K, the portion of the byte string X that follows the leading
01 byte.

72

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Notes:

Using Integer Factorization Cryptography
December, 2008

Care must be taken to ensure that the different error conditions that may be detected in
Step 5 above cannot be distinguished from one another by an opponent, whether by error
message or by process timing. Otherwise, an opponent may be able to obtain useful
information about the decryption of a chosen ciphertext C, leading to the attack observed
by Manger [15]. A single error message must be employed and output the same way for
each type of decryption error. There should be no difference in the observable behavior
for the different RSA-OAEP decryption errors.

In addition, care needs to be taken to ensure that even if there are no errors, an
implementation does not reveal partial information about the encoded message EM. For
instance, the observable behavior of the mask generation function must not reveal even
partial information about the MGF seed employed in the process (since that could
compromise portions of the maskedDB' segment of EM). An opponent who can reliably
obtain particular bits of EM for sufficiently many chosen ciphertexts may be able to
obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of
Héstad and Naslund [17].

RSADP.

AHHH

P
EM = |00| maskedMGFSeedl maskedDB

&
Aver)

DB = IHash | PS | 01| K |

Figure 5: RSA-OAEP Decryption Operation

73

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

7.2.3 RSA-based Key-Encapsulation Mechanism with a Key-Wrapping Scheme
(RSA-KEM-KWS)

RSA-KEM-KWS is used by the KTS-KEM-KWS key-transport schemes (see Section 9.3). RSA-
KEM-KWS operations include a key-encapsulation method based on the RSASVE secret-value
encapsulation operations and an approved key-derivation function (which depend, in turn, upon
an approved random bit generator, the RSAEP and RSADP primitives, and an approved hash
function). These operations are used to communicate a symmetric key-wrapping key to the
intended receiving party. RSA-KEM-KWS operations also include an approved symmetric key-
wrapping algorithm, which is used to convey the actual keying material to the intended receiving
party.

RSA-KEM-KWS can process keying material of any length supported by the key-wrapping
algorithm.

7.2.3.1 RSA-KEM-KWS Components

RSA-KEM-KWS uses the following components:
1. KDF: A key derivation function (see Section 5.9).

2. KWA: A symmetric key-wrapping algorithm, consisting of a wrapping operation
KWA.WRAP and an unwrapping operation KWA.UNWRAP (see Section 5.7).

3. RSASVE: A Secret value encapsulation operation that generates and encrypts a shared
secret value to produce ciphertext (using the RSASVE.GENERATE operation
in Section 7.2.1.2) or recovers the shared secret value from the ciphertext
(using the RSASVE.RECOVER operation in Section 7.2.1.3).

4. RBG: A random bit generator (see Section 5.3). The security strength for the RBG
shall be at least the target security strength for the key establishment scheme.

7.2.3.2 RSA-KEM-KWS Encryption Operation

RSA-KEM-KWS.ENCRYPT is illustrated in Figure 6. The public key-establishment key of the
intended receiving party is input to RSASVE.GENERATE, obtaining a secret value Z and
corresponding ciphertext byte string Cy. This secret value, along with any required Otherinfo
shared by the sender and the intended receiving party (see Section 5.9), is used as input to the
KDF to obtain a key-wrapping key. This key-wrapping key, along with (optional) additional
input 4 (see Section 9.1) that is known to both the sender and the intended receiving party, is
used by the key-wrapping algorithm to encrypt the keying material, producing a ciphertext byte
string C;. The output of the RSA-KEM-KWS encryption operation is the concatenation of Cp
and C,.

Function call: RSA-KEM-KWS.ENCRYPT((n, €), kwkBits, K A)
Input:
1. (n, e): the receiver’s RSA public key.

74

2.

3.

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008
kwkBits: the length of the key-wrapping key in bits.

K: the keying material to be wrapped, a byte string.

4. A: the additional input (see Section 9.1), a byte string (may be the empty string).

Output:

C: the ciphertext; a byte string.

Errors: An indication that the keying material length is not supported.

Assumptions: The RSA public key is valid and the value of KLen is known.

Process:
1. nLen = the length of » in bytes.
2. Length checking:
a. KLen = the length of K in bytes.
b. If KLen is not among the lengths supported by the key-wrapping algorithm,
output an indication that the keying material length is not supported and stop.
3. Secret value generation and encapsulation:
Use the RSASVE GENERATE operation specified in Section 7.2.1.2 to generate a secret
value byte string Z and a corresponding ciphertext byte string Cy using the responder’s
public key, where both Z and Cj are nLen bytes in length.
(Z, Cy) = RSASVE GENERATE((n, €)).
4. Key derivation:
Derive a key-wrapping key KWK of length kwkBits bits from the byte string Z
KWK = KDF(Z, kwkBits, OtherInfo),
where the Otherlnfo is known by both parties (see Section 5.9).
5. Key-wrapping:

Wrap the keying material K (see Section 5.7) using the key-wrapping key KWK,
associating it with the additional input, 4 to produce a KW A-ciphertext byte string C;:

C; = KWA.WRAP(KWK, K, A) .

75

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

6. Concatenation:

Concatenate the RSA-ciphertext byte string Cy and the KWA-ciphertext byte string C; to
form a ciphertext byte string C:

C=GCol Ci.

7. Output the ciphertext byte string C.

L« JLA |
‘ Z‘ keydataBits ‘ Otherinfo ‘
RSASVE
GENERATE
KWK KWA
Cy KDF Wrap

Figure 6: RSA-KEM-KWS Encryption Operation

7.2.3.3 RSA-KEM-KWS Decryption Operation

RSA-KEM-KWS.DECRYPT is illustrated in Figure 7. The private key-establishment key of the
intended receiving party and Cj are input to RSASVE.RECOVER, which returns the secret value
Z. This secret value (along with any required Otherlnfo) is used as input to the KDF to recover
the key-wrapping key. The key-wrapping key (together with the additional data 4 — if that option
was exercised) is then used to decrypt C; and recover the transported keying material.

Function call: RSA-KEM-KWS.DECRYPT((n, d), C, kwkBits A)
Input:
1. (n, d): the recipient’s RSA private key..

76

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
2. C: the ciphertext; a byte string.

3. kwkBits: the length of the key-wrapping key in bits.
4. A: additional input; a byte string (may be the empty string).

Output:

K: the recovered keying material that was wrapped; a byte string.

Errors: An indication of a decryption error.
Assumptions: The RSA private key is valid, and the value of KBits is known.
Process:

1. nLen = the length of » in bytes.
2. Length checking:

a. cLen = the length of the ciphertext string C in bytes.

b. If cLen < nlLen, or if cLen — nLen is not among the lengths supported by the
symmetric key-wrapping algorithm, output an indication of a decryption error

and stop.

3. Separation:

Separate the ciphertext byte string C into an RSA-ciphertext byte string Cy of length nLen

bytes and a KWA-ciphertext byte string C; of length cLen — nLen bytes:
C=0C || C.

4. Recover Shared Secret:

Recover the shared secret byte string Z from the ciphertext byte string Cy using the

RSASVE.RECOVER operation specified in Section 7.2.1.3.

Z =RSASVE.RECOVER((n, d), Cp)

If an indication of a decryption error is returned, output an indication of a decryption

error and stop.
5. Key derivation:
Derive a key-wrapping key KWK of length kwkBits bits from the byte string Z

KWK = KDF(Z, KBits,OtherInfo),

77

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
where the OtheriInfo is known by both parties (see Section 5.9).

6. Key unwrapping:

Unwrap the KWA-ciphertext byte string C; using the key-wrapping key KWK to recover
the keying material K (see Section 5.7), verify the correctness of 4:

K=KWA.UNWRAP(KWK, C; A).

If the unwrapping operation outputs an error indicator, output an indication of a
decryption error and stop.

7. Output the keying material K.

Notes:

1. Care needs be taken to ensure that the different error conditions in Steps 2.2, 4, and 6
cannot be distinguished from one another by an opponent, whether by error message
or timing. Otherwise, an opponent may be able to obtain useful information about the
decryption of a chosen ciphertext C, leading to the attack observed by Manger [15]. A
single error message shall be employed and output the same way for each error type.
There should be no difference in timing or other behavior for the different errors. In
addition, care needs to be taken to ensure that even if there are no errors, an
implementation does not reveal partial information about the shared secret Z. An
opponent who can reliably obtain particular bits of Z for sufficiently many chosen
ciphertexts may be able to obtain the full decryption of an arbitrary ciphertext by
applying the bit-security results mentioned in Annex B5.2.2 (last paragraph) of ANS
X9.44.

2. In addition, care must be taken to ensure that an implementation does not reveal
information about the encapsulated secret value Z. For instance, the observable
behavior of the KDF must not reveal even partial information about the Z value
employed in the key derivation process. An opponent who can reliably obtain
particular bits of Z for sufficiently many chosen ciphertexts may be able to obtain the
full decryption of an arbitrary ciphertext by applying the bit-security results of Hastad
and Naslund [17].

78

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

c= Co \ c,

Z‘ keydataBits ‘ OtherInfo ‘

Co

RSASVE
RECOVER

z

Figure 7: RSA-KEM-KWS Decryption Operation

8 Key Agreement Schemes

In a key agreement scheme, two parties, the initiator and the responder, establish keying
material over which neither has direct control of the result, but both have influence. This
Recommendation provides two families of key agreement schemes, KAS1 and KAS2. These
schemes are based on secret value encapsulation (see Section 7.2.1).

Key confirmation is included in some of these schemes to provide assurance that the participants
share the same keying material; see Section 6.6 for the details of key confirmation. When
possible, each party should have such assurance. Although other methods are often used to
provide this assurance, this Recommendation makes no statement as to the adequacy of these
other methods.

The scheme initiator, party U, shall have an identifier /Dy, and the scheme responder, party V,
shall have an identifier /Dy. The identifiers shall be non-null and selected in accordance with the
protocol utilizing the scheme. When a party’s public key is employed in a scheme, that party’s
identifier shall be bound to its public key.

A general flow diagram is provided for each key agreement scheme. The dotted-line arrows
represent the distribution of public keys that may be distributed by the parties themselves or by a
third party, such as a Certification Authority (CA). The solid-line arrows represent the
distribution of nonces or cryptographically protected values that occur during the key agreement
scheme. Note that the flow diagrams in this Recommendation omit explicit mention of various

79

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

validation checks that are required. The flow diagrams and descriptions in this Recommendation
assume a successful completion of the key agreement process.

8.1 Common Components for Key Agreement
The key agreement schemes in this Recommendation have the following common components:

1. RSASVE: RSA secret value encapsulation, consisting of a generation operation
RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see
Section 7.2.1).

2. KDF: A key derivation function (see Section 5.9).

8.2 The KAS1 Family

In this family of key agreement schemes, only the responder’s key-establishment key pair is
used. Note that both parties may actually have key-establishment key pairs, but only the
responder’s key pair is used in the scheme.

The schemes in this family have the following general form:

1. Party U (the initiator) generates a secret value (which will become a shared secret) and a
corresponding ciphertext using the RSASVE.GENERATE operation and party V’s (the
responder’s) public key-establishment key, and sends the ciphertext to party V.

2. Party V recovers the shared secret from the ciphertext using the RSASVE.RECOVER
operation and its private key-establishment key. Party V generates a nonce and sends it to
party U.

3. Both parties then derive keying material from the shared secret and “other information”,
including party V’s nonce, using a key derivation function. The length of the keying
material that can be agreed on is limited only by the length that can be output by the key
derivation function.

4. If key confirmation is incorporated, then the derived keying material is parsed into two
parts, MacKey and KeyData. The MacKey and MacData are used to compute a MacTag
of length MacTaglLen (see Section 6.6.1). The MacTag is sent from the provider to the
recipient. If the MacTag computed by the provider matches the MacTag computed by the
recipient, then the successful establishment of keying material is confirmed to the
recipient.

The following schemes are defined:
1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2).

2. KASl-responder-confirmation, a variant of KAS1-basic with unilateral key
confirmation from party V to party U (see Section 8.2.3).

For the security properties of this family, see Section 8.2.4.

80

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

8.2.1 KASI1 Family Prerequisites

1. The responder shall have been designated as the owner of a key-establishment key pair
that was generated as specified in Section 6.3. The responder shall have assurance of its
possession of the correct value for its private key as specified in Section 6.5.1.

2. The initiator and responder shall have agreed upon an approved key derivation function
(see Section 5.9), an approved hash function appropriate for use with the key derivation
function and associated parameters (see Sections 5.1 and 6.2.3), the value of KBits, and
the contents of the Otherinfo field used during key derivation.

3. When key confirmation is used, the initiator and responder shall have agreed upon an
approved MAC algorithm and associated parameters (see Sections 5.2 and 6.2.3).

4. Prior to or during the key agreement process, each party shall obtain the identifier that is
to be associated with the other party during the key agreement transaction. The initiator
shall obtain the public key-establishment key that is bound to the responder’s identifier in
a trusted manner (e.g., from a certificate signed by a trusted CA). The initiator shall also
obtain the assurance of validity of this public key as specified in Section 6.4.2.

5. The following is a prerequisite for using any keying material derived during a KAS1 key
agreement scheme for purposes beyond those of the scheme itself.

The initiator of a particular KAS1 key agreement transaction shall obtain assurance
that the intended responder is (or was) in possession of the private key-establishment
key corresponding to the public key-establishment key used by the initiator during
that transaction, as specified in Section 6.5.2.

This requirement recognizes the possibility that assurance of private-key possession may
be provided/obtained by means of key confirmation performed as part of a particular
KASTI transaction.

8.2.2 KASIl-basic

KAS1-basic is the basic key agreement scheme in the KAS1 family. In this scheme, the
responder does not contribute to the formation of the shared secret; instead, a nonce is used as a
responder-selected contribution to the KDF, ensuring that both parties influence the derived
keying material.

Let (PubKeyv, PrivKeyv) be party V’s key-establishment key pair. Let KBits be the intended
length in bits of the keying material to be established. The parties shall perform the following or
an equivalent sequence of steps, as illustrated in Figure 8.

Party U shall execute the following key agreement steps in order to a) establish a shared secret Z
with party V, and b) derive shared secret keying material from Z.

Actions: Party U shall derive secret keying material as follows:

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generated a secret value Z
and a corresponding ciphertext C using party V’s public key-establishment key PubKeyy.
Note that the secret value Z will become a shared secret when recovered by Party V.

81

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008
2. Send the ciphertext C to party V.

3. Obtain party V’s nonce Ny from party V. If Ny is not available, output an error indicator
and stop.

4. Construct the other information OtherInfo for key derivation (see Section 5.9) using (at a
minimum) the identifiers /Dy and IDy, and the nonce Ny.

5. Use the agreed-upon key derivation function (see Section 5.9) to derive secret keying
material DerivedKeyingMaterial of length KBits from the shared secret Z and Otherinfo.
If the key derivation function outputs an error indicator, zeroize all copies of Z, output an
error indicator and stop.

6. Zeroize all copies of the shared secret Z and output the DerivedKeyingMaterial.
Output: The bit string DerivedKeyingMaterial of length KBits or an error indicator.

Party V shall execute the following key agreement steps in order to a) establish a shared secret Z
with party U, and b) derive shared secret keying material from Z.

Actions: Party V shall derive secret keying material as follows:
1. Receive a ciphertext C from party U.

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the shared secret Z
from the ciphertext C using the private key-establishment key PrivKeyv. If the call to
RSASVE.RECOVER outputs an error indicator, zeroize the result of all intermediate
calculations used in the attempted recovery of Z, output an error indicator and stop (see
Note).

3. Obtain a nonce Ny (see Section 5.6) and send Ny to party U.

4. Construct the other information OtherInfo for key derivation (see Section 5.9) using (at a
minimum) the identifiers /Dy and IDy, and the nonce Ny.

5. Use the agreed-upon key derivation function (see Section 5.9) to derive secret keying
material DerivedKeyingMaterial of length KBits from the shared secret Z and Otherinfo.
If the key derivation function outputs an error indicator, zeroize all copies of Z, output an
error indicator and stop.

6. Zeroize all copies of the shared secret Z and output the DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length KBits or error indicator.

82

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Initiator (Party U) Responder (Party V)

(PubKeyy, PrivKeyy)

Obtain responder’s public key- PubKeyy
establishment key ===
C
(2, €)= E— Z = RSASVE.Recover(PrivKeyy. C)

RSASVE.GeneraTe(PubKeyy)

Ny

Derived keying material = KDF(Z, | <«—— Derived keying material = KDF(Z,
KBits, OtherlInfo) KBits, OtherInfo)

Figure 8: KAS1-basic Scheme

The messages may be sent in a different order. Even though party U remains the designated
initiator, Ny may be sent before C.

It is extremely important that an implementation not reveal any sensitive information. It is also
important to conceal partial information about the shared secret Z.

8.2.3 KAS1 Key Confirmation
The KAS1-responder-confirmation scheme is based on the KAS1-basic scheme.

8.2.3.1 KASI1 Key Confirmation Components

The components for KAS1 key confirmation are the common components listed in Section 8.1,
plus the following:

3. MAC: A message authentication code algorithm with the following parameters
(see Section 5.2),

a. MacKeyLen: the length in bytes of MacKey (see Table 1 in Section
6.2.3), and

b. MacTagLen: the length in bytes of the MacTag (see Table 1 in
Section 6.2.3).

83

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

For KAST1 key confirmation, the length of the keying material shall be at least MacKeyLen bytes,
where MacKeyLen is the length of the MacKey (see Section 6.2.3), and usually longer so that
other keying material is available for subsequent operations. The MacKey shall be the first
MacKeyLen bytes of the keying material and shall be used only for the key confirmation
operation.

8.2.3.2 KASIl-responder-confirmation

Figure 9 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V
to party U. In this scheme, party V, the scheme responder, and party U, the scheme initiator,
assume the roles of key confirmation provider and recipient, respectively.

To provide (and receive) key confirmation (as described in Section 6.6.1), both parties set
EphemDatay = Ny, and EphemDatay = C:

Party V provides MacTagy to party U (as specified in Section 6.6.1, with P =V and R = U),
where MacTagy is computed (as specified in Section 5.2.1) using

MacDatay=“KC 1 V” || IDy|| IDy|| Ny || C{ || Text}.

The recipient (party U) uses the identical format and values to compute MacTagy and then
verifies that the newly computed MacTagy matches the MacTagy value provided by party V.

The MacKey used during Key Confirmation shall be zeroized by Party V immediately after the
computation of MagTagy, and by Party U immediately after the verification of the received
MacTagy or a (final) determination that the received MacTagy is in error.

84

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Initiator (Party U) Responder (Party V)

(PubKeyy, PrivKeyy)

Obtain responder’s public key-
establishment key S ——

(Z,C) =

RSASVE.GENERATE(PubKey,) | ——» Z = RSASVE.RECOVER(PrivKeyy, C)

MacKey || KeyData = KDF(Z, Nv MacKey || KeyData = KDF(Z, KBits,
KBits, OtherInfo) Otherinfo)
MacTagy
MacTagy =? MAC(MacKey, MacTagy = MAC(MacKey,

A

MacTagLen, MacDatay) MacTagLen, MacDatay)

Figure 9: KAS1-responder-confirmation Scheme (from Party V to Party U)

Certain messages may be combined or sent in a different order. E.g., Ny and MacTagv may be
sent together. Alternatively, Ny may be sent before C even though party U remains the
designated initiator.

8.2.4 KASLI1 Security Properties

In each scheme included in this family, only the identifier of V (the responder) is required to be
bound to a public key-establishment key. U (the initiator) has assurance that no unintended party
can recover Z from C (without the compromise of private information).

The responder, however, has no such assurance. In particular, V has no assurance as to the
accuracy of the identifier claimed by the initiator and, therefore, has no assurance as to the true
source of the ciphertext C.

Due to the initiator’s unilateral selection of the random Z value, U has assurance that fresh
keying material will be derived in each instantiation of these schemes. V has similar assurance
owing to its contribution of the nonce Ny to the KDF input.

A compromise of the responder’s private key will allow an adversary to masquerade as the
responder in future key establishment transactions, and compromise all shared secrets (and

85

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

derived keying material) resulting from past and future KAS1 transactions having that party as
the responder — assuming that a malicious party has access to the publicly exchanged data
(including C and Nv). Other applications that rely on the private key will be affected.

It is important to understand that a scheme may be just one of several components of a protocol.
The combination of these components may endow the protocol with additional security
properties beyond those provided by any particular component. Note that protocols, per se, are
not specified in this Recommendation.

Through the inclusion of MacTagy in the KAS1-responder-confirmation scheme, and by
successfully comparing the received value of MacTagy with its own computation, the initiator
(U) obtains assurance that

1. the responder (V) has correctly recovered Z from C;
2. that both parties agree on the values of /Dy, IDy, Ny, and C;

3. that (at least the MacKey portion of) the derived keying material has been correctly
computed by V;

4. V is in possession of the correct private key that corresponds to the public key used in the
transaction, and

5. V has actively participated in the transaction.
Consequently, responder authentication is implicitly provided by the binding of party V’s
identifier to the public key-establishment key (see Section 6.7).

8.3 KAS2 Family

In this family of key agreement schemes, both the initiator’s and responder’s key-establishment
key pairs are used.

The schemes in this family have the following general form:

1. Party U (the initiator) generates a secret value (which will become a part of the shared
secret) and a corresponding ciphertext using the RSASVE.GENERATE operation and
party V’s (the responder’s) public key-establishment key, and sends the ciphertext to
party V.

2. Party V recovers the shared secret value from the ciphertext received from party U using
the RSASVE.RECOVER operation and its private key-establishment key.

3. Party V generates a secret value (which will become a second part of the shared secret)
and the corresponding ciphertext using RSASVE GENERATE operation and party U’s (the
initiator’s) public key-establishment key, and sends the ciphertext to party U.

4. Party U recovers the shared secret value from the ciphertext received from party V using
the RSASVE.RECOVER operation and its private key-establishment key.

86

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

5.

Using Integer Factorization Cryptography
December, 2008

Both parties concatenate the shared secret values to form the shared secret, and then
derive keying material from the shared secret and “other information” using a key
derivation function. The length of the keying material that can be agreed on is limited
only by the length that can be output by the key derivation function.

. Party U and/or party V may additionally provide key confirmation. If key confirmation is

incorporated, then the derived keying material is parsed into two parts, MacKey and
KeyData. The MacKey is then used to compute a MacTag of MacTaglLen bytes on
MacData (see Section 6.6.1). The MacTag is sent from the provider to the recipient. If
the MacTag computed by the provider matches the MacTag computed by the recipient,
then the successful establishment of keying material is confirmed to the recipient.

The following schemes are defined:

1.
2.

8.3.1

KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2).

KAS2-responder-confirmation, a variant of KAS2-basic with unilateral key
confirmation from party V to party U (see Section 8.3.3.2).

KAS2-initiator-confirmation, a variant of KAS2-basic with unilateral key confirmation
from party U to party V (see Section 8.3.3.3).

KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key confirmation
between party U and party V (see Section 8.3.3.4).

KAS2 Family Prerequisites

. Each party (initiator and responder) shall have been designated as the owner of a key-

establishment key pair that was generated as specified in Section 6.3. Prior to or during
the key agreement process, each party shall obtain assurance of its possession of the
correct value for its own private key as specified in Section 6.5.1.

The initiator and responder shall have agreed upon an approved key derivation function
(see Section 5.9), an approved hash function appropriate for use with the key derivation
function and associated parameters (see Sections 5.1 and 6.2.3), the value of KBits, and
the contents of the Otherinfo field used during key derivation.

Prior to or during the key agreement process, each party shall obtain the identifier that is
to be associated with the other party during the key agreement transaction and shall
obtain the public key-establishment key that is bound to that identifier. These public keys
shall be obtained in a trusted manner (e.g., from a certificate signed by a trusted CA).
Each party shall obtain assurance of validity of the public key bound to the other party’s
identifier, as specified in Section 6.4.2.

The following is a prerequisite for using any keying material derived during a KAS2 key
agreement scheme for purposes beyond those of the scheme itself.

The recipient of a public key-establishment key that is used by the recipient during a
particular KAS2 key agreement transaction shall obtain assurance that its (claimed)
owner is (or was) in possession of the corresponding private key-establishment key, as
specified in Section 6.5.2. That is,

87

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

a. The initiator of a particular KAS2 key agreement transaction shall obtain
assurance that the intended responder is (or was) in possession of the private key-
establishment key corresponding to the public key-establishment key used by the
initiator during that transaction (as specified in Section 6.5.2);

b. The responder in a particular KAS2 key agreement transaction shall obtain
assurance that the apparent initiator is (or was) in possession of the private key-
establishment key corresponding to the public key-establishment key used by the
responder during that transaction (as specified in Section 6.5.2).

This requirement recognizes the possibility that assurance of private-key possession may
be provided/obtained by means of key confirmation performed as part of a particular
KAS?2 transaction.

8.3.2 KAS2-basic

Figure 10 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret
values that are concatenated together to form the mutually determined shared secret to be input
to the key derivation function.

Party U shall execute the following key agreement steps in order to a) establish a mutually
determined shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U shall derive secret keying material as follows:

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Zy
and a corresponding ciphertext Cy using party V’s public key-establishment key
PubKeyy.

2. Send the ciphertext Cy to party V.

3. Receive a ciphertext Cy from party V. If Cy is not available, output an error indicator and
stop.

4. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the Zy from the
ciphertext Cy using the private key-establishment key PrivKeyv. If the call to
RSASVE.RECOVER outputs an error indicator, zeroize the results of all intermediate
calculations used in the attempted recovery of Zy, zeroize Z,, and output an error
indicator and stop.

5. Construct the mutually determined shared secret Z from Zy and Zy:
Z= ZU || Zv.

6. Construct the other information OtherInfo for key derivation (see Section 5.9) using (at a
minimum) the identifiers /Dy and IDy.

7. Use the agreed-upon key derivation function (see Section 5.9) to derive secret keying
material DerivedKeyingMaterial of length KBits from the shared secret Z and Otherinfo.

88

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

If the key derivation function outputs an error indicator, zeroize all copies of Z, Zy, and
Zy, and output an error indicator and stop.

8. Zeroize all copies of Z, Zy and Zy, and output the DerivedKeyingMaterial or an error
indicator.

Output: The byte string DerivedKeyingMaterial of length KBits or error indicator.

Party V shall execute the following key agreement steps in order to a) establish a mutually
determined shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V shall derive secret keying material as follows:
1. Receive a ciphertext Cy from party U.

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover Zy from the
ciphertext Cy using the private key-establishment key PrivKeyv. If the call to
RSASVE.RECOVER outputs an error indicator, zeroize the result of all intermediate
calculations used in the attempted recovery of Zy, output an error indicator and stop.

3. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Zy
and a corresponding ciphertext Cy using party U’s public key-establishment key
PubKeyy.

4. Send the ciphertext Cy to party U.
5. Determine the mutually determined shared secret Z from Zy and Zy:
Z= ZU H Zv.

6. Construct the other information OtheriInfo for key derivation (see Section 5.9) using (at a
minimum) the identifiers /Dy and IDy.

7. Use the agreed-upon key derivation function (see Section 5.9) to derive secret keying
material DerivedKeyingMaterial of length KBits from the shared secret Z and Otherinfo.
If the key derivation function outputs an error indicator, zeroize all copies of Z, Zy, and
Zy, and output an error indicator and stop.

8. Zeroize all copies of Z, Zy, and Zy, and output the DerivedKeyingMaterial.

Output: The byte string DerivedKeyingMaterial of length KBits or error indicator.

&9

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Initiator (Party U) Responder (Party V)
(PubKeyy, PrivKeyy) (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key «— — — —
PubKeyy Obtain party U’s public key-
BN establishment key
ZU =
(Zu, Cu) = Cu .
RSASVE.GENERATE(PubKeyy) SN RSASVE'RE%O\)/ER(P“VKEW’
U
RSASVE REié:ER(Prier Cv (2v, Cv) =
Ehar) yu, — RSASVE.GENERATE(PubKeyy)
V
Z:ZU”ZV Z:ZU”ZV
DerivedKeyingMaterial = DerivedKeyingMaterial =
KDF(Z, KBits, OtherInfo) KDF(Z, KBits, OtherInfo)

Figure 10: KAS2-basic Scheme

The messages may be sent in a different order. Even though party U remains the designated
initiator, Cy may be sent before Cy.

It is extremely important that an implementation not reveal any sensitive information. It is also
important to conceal partial information about Zy, Zy and Z to prevent chosen-ciphertext attacks
on the secret value encapsulation scheme. In particular, the observable behavior of the key-
agreement process should not reveal partial information about the shared secret Z.

8.3.3 KAS2 Key Confirmation
The KAS2 key confirmation schemes are based on the KAS2-basic scheme.

8.3.3.1 KAS2 Key Confirmation Components

The scheme components for KAS2 key confirmation are the common components in Section
8.1, plus the following:

3. MAC: A message authentication code algorithm (see Section 5.2)

a. MacKeyLen: the length in bytes of the MacKey (see Table 1 in
Section 6.2.3).

90

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

b. MacTagLen: the length in bytes of the MacTag (see Table 1 in
Section 6.2.3).

For this scheme, the length of the keying material shall be at least MacKeyLen, where
MacKeyLen is the length in bytes of the MacKey (see Section 6.2.3), and usually longer so that
other keying material is available for subsequent operations. The MacKey shall be the first
MacKeyLen bytes of the keying material and shall be used only for the key confirmation
operation.

8.3.3.2 KAS2-responder-confirmation

Figure 11 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party
V to party U. In this scheme, party V, the scheme responder, and party U, the scheme initiator,
assume the roles of the key confirmation provider and recipient, respectively.

To perform key confirmation (as described in Section 6.6.1), both parties set EphemDatay =
Cy, and EphemDatay = Cy.

Party V provides MacTagy to party U (as specified in Section 6.6.1, with P =V and R = U),
where MacTagy is computed (as specified in Section 5.2.1) on

MacDatay=“KC_1 V” || IDy|| IDy|| Cy|| Cu{ || Text}.

The recipient (party U) uses the identical format and values to compute MacTagy and then
verifies that the newly computed MacTagy equals the MacTagy value provided by party V.

The MacKey used during key confirmation shall be zeroized by Party V immediately after the
computation of MagTagy, and by Party U immediately after the verification of the received
MacTagy or a (final) determination that the received MacTagy is in error.

Initiator (Party U) Responder (Party V)
(PubKeyy, PrivKeyy) (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key «— — — —
PubKeyy Obtain party U’s public key
SN establishment-key
(Zu, Cu) = Cu Zy=
RSASVE.Generate(PubKeyy) > RSASVE.Recover(PrivKeyy, Cy)
RSASVE Rezcvoxzxer(Prier Cv (v, Cv) =
Hhape) Yo, ¢ RSASVE.Generate(PubKeyy)
V

91

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Z:ZU”ZV Z:ZU”ZV
K= KDF(Z, KBits, OtheriInfo) K = KDF(Z, KBits, Otherinfo)
= MacKey || KeyData = MacKey || KeyData
MacTagy
MacTagy =? MAC(MacKey, MacTagy = MAC(MacKey,
MacTagLen, MacDatay) < MacTagLen, MacDatay)

Figure 11: KAS2-responder-confirmation Scheme (from Party V to Party U)

Certain messages may be combined or sent in a different order. E.g., Cyand MacTagy may be
sent together. Alternatively, Cy may be sent before Cy, even though party U remains the
designated initiator.

8.3.3.3 KAS2-initiator-confirmation

Figure 12 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party
U to party V. In this scheme, party U, the scheme initiator, and party V, the scheme responder,
assume the roles of key confirmation provider and recipient, respectively.

To provide (and receive) key confirmation (as described in Section 6.6.1), both parties set
EphemDatay = Cy, and EphemDatay = Cy.

Party U provides MacTagyto party V (as specified in Section 6.6.1, with P =U and R = V),
where MacTagy is computed (as specified in Section 5.2.1) on

MacDatay=“KC 1 U” || IDy || IDy || Cy || Cy{ || Text}.

The recipient (party V) uses the identical format and values to compute MacTagy and then
verifies that the newly computed MacTagy matches the MacTagy value provided by party U.

The MacKey used during key confirmation shall be zeroized by Party U immediately after the
computation of MagTagy, and by Party V immediately after the verification of the received
MacTagy or a (final) determination that the received MacTagy is in error.

92

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Initiator (Party U)

Responder (Party V)

(PubKeyy, PrivKeyy)

(PubKeyy, PrivKeyy)

Obtain party V's public key- PubKeyy
establishment key =
PubKeyy Obtain party U’s public key-
______ > establishment key
Cu
(Zu, Cu) = Zy =
RSASVE.GENERATE(PubKeyy) EEE— RSASVE.RECOVER(PrivKeyy, Cy)
Zy = RSASVE.RECOVER(PrivKeyy, Cv (Zv, Cy) =
Cv) < RSASVE.GENERATE(PubKeyy)
z=2yllzy Z=2zllzy
MacKey || KeyData = KDF(Z, KBits, MacKey || KeyData = KDF(Z, KBits,
Otherlnfo) Otherlnfo)
MacTagy = MAC(MacKey, MacTagy MacTagy =? MAC(MacKey,
MacTagLen, MacDatay) ; MacTagLen, MacDatay)

Figure 12: KAS2-initiator-confirmation Scheme (from Party U to Party V)

Certain messages may be sent in a different order (and combined with others). Even though party
U remains the designated initiator, Cy may be sent before Cy; in which case Cy and MacTagy

may be sent together.

8.3.3.4 KAS2-hilateral-confirmation

Figure 13 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this
scheme, party U, the scheme initiator, and party V, the scheme responder, assume the roles of
both the provider and the recipient in order to obtain bilateral key confirmation.

To provide bilateral key confirmation (as described in Section 6.6.2), party U and party V
exchange and verify MacTags that have been computed (as specified in Section 6.6.1) using
EphemDatay = Cy, and EphemDatay = Cy.

93

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Party V provides MacTagy to party U (as specified in Section 6.6.1, with P = V and R = U);
MacTagy is computed by party V (and verified by party U) on

MacDatay=“KC 2 V” || IDy || IDy|| Cy || Cut || Text;}.

Party U provides MacTagy to party V (as specified in Section 6.6.1, with P = U and R = V);
MacTagy is computed by party U (and verified by party V) on

MacDatay=“KC 2 U” || IDy || IDy|| Cu || Cy{ || Text,}.

The MacKey used during key confirmation shall be zeroized by each party immediately
following its use to compute and verify the MacTag for key confirmation. Once Party U has
computed MacTagy and has either verified the received MacTagy or made a (final)
determination that the received MacTagy is in error, Party U shall immediately zeroize its copy
of MacKey. Similarly, after Party V has computed MacTagy and has either verified the received
MacTagy or made a (final) determination that the received MacTagy is in error; Party V shall
immediately zeroize its copy of MacKey.

Initiator (Party U) Responder (Party V)
(PubKeyy, PrivKeyy) (PubKeyy, PrivKeyy)
Obtain party Vs public key- PubKeyy (Z,C) =
establishment key ‘- RSASVE.GENERATE(PubKeyy)
PubKeyy Obtain party U’s public key-
______ > establishment key
(ZU CU) — CU ZU = -
RSASVE.GENERATE(PubKeyy) > RSASVE'RECCO\)/ER(P“VKGVV'
U
RSASVE REéé\:/ER(Prier o (2v, Cv) =
o) Yo < RSASVE.GENERATE(PubKeyy)
V
z=2yllzy z=2yllzy
MacKey || KeyData = KDF(Z, MacKey || KeyData= KDF(Z,
KBits, OtherInfo) KBits, OtherInfo)
MacTagy =? MAC(MacKey, MacTagy MacTagy = MAC(MacKey,

MacTagLen, MacDatay) MacTaglLen, MacDatay)

A

94

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

MacTagy = MAC(MacKey, MacTagu MacTagy =? MAC(MacKey,
MacDatay) > MacDatay)

Figure 13: KAS2-bilateral-confirmation Scheme

Certain messages may be sent in a different order (and/or combined with others). Even though
party U remains the designated initiator, Cy may be sent before Cyy and/or MacTagy may be sent
before MacTagy. If Cy is sent immediately before MacTagy, then Cy and MacTagy may be sent
together. If Cy is sent immediately before MacTagy, then Cy and MacTagy may be sent together.

8.3.4 KAS2 Security Properties

In the schemes included in this family, each party has an identifier that is bound to a public key-
establishment key. Therefore, U (the initiator) has assurance that no unintended party can
recover Zy from Cy, and V (the responder) has assurance that no unintended party can recover Zy
from Cy (without the compromise of private information). Consequently, U and V both have
assurance that they are the only two parties capable of deriving the keying material
corresponding to Zy || Zy.

By virtue of their random contributions (Zy by U and Zy by V) to the KDF input, each party also
has assurance that fresh keying material will be derived in each instantiation of these schemes.

The compromise of one party’s private key will allow an adversary to masquerade as that party
in future key establishment transactions. However, the compromise of the private key of a single
participant will not, by itself, permit the compromise of keying material derived in KAS2
transactions (between honest parties).

Through the inclusion of MacTagy in the KAS2-responder-confirmation and KAS2-bilateral-
confirmation schemes, and by successfully comparing the received value of MacTagy with its
own computation, the initiator (U) obtains assurance that

1. the responder (V) has correctly recovered Zy from Cy;
2. that both parties agree on the values of /Dy, IDy, Cy, and Cy;

3. that (at least the MacKey portion of) the derived keying material has been correctly
computed by V;

4. V is in possession of the correct private key that corresponds to the public key used by
Party U in the transaction;

5. 'V has actively participated in the process; and

6. U has correctly recovered Zy from Cy and therefore possesses the correct value for its
private key.

Through the inclusion of MacTagy in the KAS2-initiator-confirmation and KAS2-bilateral-
confirmation schemes, and by successfully comparing the received value of MacTagy with its
own computation, the responder (V) obtains assurance that

1. the initiator (U) has correctly recovered Zy from Cy;

95

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

2. that both parties agree on the values of /Dy, IDy, Cy, and Cy;

3. that (at least the MacKey portion of) the derived keying material has been correctly
computed by U;

4. U is in possession of the correct private key that corresponds to the public key used by
Party V in the transaction;

5. U has actively participated in the process; and

6. V has correctly recovered Zy from Cy and, therefore, possesses the correct value for its
private key.

9 IFC based Key Transport Schemes

In a key transport scheme, two parties, the sender and the receiver, establish keying material
selected initially by the sender. The keying material may be cryptographically bound to
additional input (see Section 9.1).

Two families of key transport schemes are specified: KTS-OAEP and KTS-KEM-KWS.

Key confirmation is included in some of these schemes to provide assurance to the sender that
the participants share the same keying material (see Section 6.6 for further details on key
confirmation.).

The keying material to be transported is determined by the sender in a key transport scheme and
has the general form:

TransportedKeyingMaterial = MacKey || KeyData.

In key transport schemes that provide key confirmation (see Sections 9.2.4.2 and 9.3.4.2), the
transported keying material shall contain a MacKey as the first bits of the keying material; the
MacKey will be used for the computation and verification of the MacTag. KeyData is the keying
material that follows the MacKey. The MacKey shall be generated anew for each instance of a
key establishment transaction using an approved random bit generator at the security strength
required for the key establishment transaction. The MacKey length shall be equal to or greater
than the security strength associated with the modulus used in the key establishment scheme (see
SP 800-57-Part 1 [7]). The KeyData may be null, or may contain keying material to be used
subsequent to the key transport transaction. The MacKey shall be used during Key Confirmation
and then immediately zeroized.

In key transport schemes that do not provide key confirmation (see Sections 9.2.4.1 and 9.3.4.1),
the TransportedKeyingMaterial = KeyData. The KeyData contains keying material to be used
subsequent to the key transport transaction.

A general flow diagram is provided for each key transport scheme. The dotted-line arrows
represent the distribution of public keys that may be distributed by the parties themselves or by a
third party, such as a Certification Authority (CA). The solid-line arrows represent the
distribution of cryptographically protected values that occur during the key transport or key
confirmation process. Note that the flow diagrams in this Recommendation omit explicit mention

96

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

of various validation checks that are required. The flow diagrams and descriptions in this
Recommendation assume a successful completion of the key transport process.

9.1 Additional Input
Additional input, A4, is supported by the key transport schemes specified in Section 9.2 and 9.3.

1. It may include a representation of shared information either exchanged by the parties or
obtained from higher-level protocols, such as:

a. the names or other identifying information (e.g., e-mail address, etc.) of the
sender and receiver;

b. nonces or other fresh data contributed by the parties;

c. the type, length, or intended use of the keying material (and/or of individual keys
within the keying material, if the keying material consists of more than one key);

d. a counter value;
e. secret data shared by the parties;
f. ahash value, and/or

other public data shared by the parties.

aa

2. A may consist of an empty string.

3. Each party to the key establishment shall know the contents of 4 before it is required by
the scheme.

One purpose of the additional input could be to enable the sender to indicate that it intends to
employ the keying material in a specified context and to bind the keying material to this context.

The method for formatting and distributing the additional input is application-defined.

9.2 KTS-OAEP Family: Key Transport Using RSA-OAEP

The KTS-OAEP family of key transport schemes is based on RSA-OAEP encrypt and decrypt
operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption and
decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only the receiver’s
key pair is used.

The key transport schemes of this family have the following general form:

1. Party U (the sender) encrypts the keying material to be transported using the RSA-OAEP
ENCRYPT operation and party V’s (the receiver’s) public key-establishment key to
produce a ciphertext, and sends the ciphertext to party V.

97

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

2.

Using Integer Factorization Cryptography
December, 2008

Party V decrypts the ciphertext using its private key-establishment key and the RSA-
OAEP DECRYPT operation to recover the transported keying material.

If key confirmation is incorporated, then the transported keying material is parsed into
two parts, a transaction-specific (random) MacKey followed by KeyData. The MacKey
portion of the keying material and an approved MAC algorithm are used by each party
to compute a MacTag (of an appropriate, agreed-upon length) on what should be the
same MacData (see Section 6.6.1). The MacTag computed by the key-confirmation
provider (V) is sent to the key-confirmation recipient (U). If the value of the MacTag sent
by V matches the MacTag value computed by U, then U obtains a confirmation of the
success of the key-transport transaction.

The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2.
The following schemes are then defined:

1.

2.

KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3).

KTS-OAEP -receiver-confirmation, a variant of KTS-OAEP-basic with unilateral key
confirmation from party V to party U (see Section 9.2.4).

For the security attributes of the KTS-OAEP family, see Section 9.2.5.

9.21
1.

KTS-OAEP Family Prerequisites

The receiver shall have been designated as the owner of a key-establishment key pair that
was generated as specified in Section 6.3. The receiver shall have assurance of its
possession of the correct value for its private key as specified in Section 6.5.1.

The sender and receiver shall have agreed upon an approved hash function appropriate
for use with the mask generation function used by RSA-OAEP (see Sections 5.1, 5.8,
6.2.3,and 7.2.2).

Prior to or during the transport process, the sender and receiver shall have either agreed
upon the form and content of the additional input 4 (a byte string to be cryptographically
bound to the transported keying material in that the cipher is a cryptographic function of
both values), or agreed that 4 will be an empty string (see Section 9.1 above).

When key confirmation is used, the sender and receiver shall have agreed upon an
approved MAC algorithm and associated parameters (see Sections 5.2 and 6.2.3).

Prior to or during the key transport process, each party shall obtain the identifier that is to
be associated with the other party during the key transport transaction. The sender shall
obtain the public key-establishment key that is bound to the receiver’s identifier. The
sender shall obtain this public key in a trusted manner (e.g., from a certificate signed by a
trusted CA). The sender shall obtain assurance of validity of this public key as specified
in Section 6.4.2.

Prior to or during the key transport process, the sender shall obtain assurance that the
intended receiver is (or was) in possession of the (correct) private key corresponding to

98

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

the public key-establishment key used during the transaction, as specified in Section
6.5.2.

7. Prior to or during the key transport process, the keying material to be transported shall be
determined as specified at the beginning of Section 9.

9.2.2 Common components
The schemes in the KTS-OAEP family have the following common component:

1. RSA-OAEP: asymmetric operations, consisting of an encryption operation RSA-
OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2).

9.2.3 KTS-OAEP-basic

KTS-OAEP-basic is the basic key transport scheme in the KTS-OAEP family without key
confirmation.

Let (PubKeyy, PrivKeyvy) be party V’s (the receiver’s) key-establishment key pair. Let K be the
keying material to be transported from party U (the sender) to party V. The parties shall perform
the following or an equivalent sequence of steps, which are also illustrated in Figurel4.

Party U shall execute the following steps in order to transport keying material to party V.
Party U Actions:

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyv
and the additional input A4, to produce a ciphertext C (see Section 7.2.2.2):

C =RSA-OAEP.ENCRYPT(PubKeyv, K, A).
2. Send the ciphertext C to party V.
Party V shall execute the following steps when receiving keys transported from party V.
Party V Actions:
1. Receive the ciphertext C.

2. Decrypt the ciphertext C using the private key-establishment key PrivKeyy and the
additional input 4, to recover the transported keying material K (see Section 7.2.2.3):

K =RSA-OAEP.DECRYPT(PrivKeyy, C, A).
If the decryption operation outputs an error indicator, output an error indication and stop.

Output: The byte string K or an error indicator.

99

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Sender (Party U) Receiver (Party V)
K to be transported (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key «— — — —
C = RSA-OAEP. C K = RSA-OAEP.
ENCRYPT(PubKeyy, K, A) > DecRrYPT(PrivKeyy, C, A)

Figure 14: KTS-OAEP-basic Scheme

9.2.4 KTS-OAEP Key Confirmation
The KES-OAEP-receiver-confirmation scheme is based on the KTS-OAEP-basic scheme.

9.2.4.1 KTS-OAEP Common Components for Key Confirmation

The components for KTS-OAEP key confirmation are the same as for KTS-OAEP-basic (see
Section 9.2.2), plus the following:

2. MAC: A message authentication code algorithm (see Section 5.2).

a. MacKeyLen: the length in bytes of the MacKey (see Table 1 in Section
6.2.3).

b. MacTagLen: the length in bytes of the MacTag (see Table 1 in Section
6.2.3).

For this scheme, the length of the keying material shall be at least MacKeyLen, where
MacKeyLen is the length in bytes of the MacKey (see Section 6.2.3) and usually longer so that
other keying material is available for subsequent operations. The MacKey shall be the first
MacKeyLen bytes of the keying material and shall be used only for the key confirmation
operation.

9.2.4.2 KTS-OAEP-receiver-confirmation
KTS-OAEP-receiver-confirmation is a variant of KTS-OAEP-basic with unilateral key
confirmation from party V to party U.

Figure 15 depicts a typical flow for the KTS-OAEP-receiver-confirmation scheme. In this scheme,
party V, the receiver, and party U, the sender, assume the roles of key confirmation provider and
recipient, respectively.

To provide (and receive) key confirmation (as described in Section 6.6.1), both parties form
MacData with EphemDatay = Null, and EphemDatay = C:

100

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Party V provides MacTagyto party U (as specified in Section 6.6.1, with P =V and R = U),
where MacTagy is computed (as specified in Section 5.2.1) using

MacDatay=“KC 1 V” || IDy || IDy || Null || C{ || Text}.

Party U uses the identical format and values to compute MacTagy and then verifies that the
newly computed MacTag, matches the MacTagy value provided by party V.

The MacKey used during key confirmation shall be zeroized by Party V immediately after the
computation of MagTagy, and by Party U immediately after the verification of the received
MacTagy or a (final) determination that the received MacTagy is in error.

Sender (Party U) Receiver (Party V)
K = MacKey |l KeyData (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key — — — —
C = RSA-OAEP. C K = RSA-OAEP.

v

ENCRYPT(PubKeyy, K, A) DeCRYPT(PrivKeyy, C, A)

MacKey || KeyData = K

MacTagy =? MAC(MacKey, MacTagy MacTagy = MAC(MacKey,
MacTagLen, MacDatay) < MacTagLen, MacDatay)

Figure 15: KET-OAEP-receiver-confirmation Scheme

9.2.5 KTS-OAEP Security Properties

In each scheme included in this family, only the identifier of V (the receiver) is bound to a public
key-establishment key. U (the sender) has assurance that no unintended party can recover K
from the ciphertext C (without the compromise of private information).

The receiver, however, has no such assurance. In particular, V has no assurance as to the
accuracy of the identifier claimed by the sender and, therefore, has no assurance as to the true
source of the ciphertext C (or the transported K).

Due to the sender’s unilateral selection of K, U has assurance that fresh keying material has been
transported. V has no such assurance.

A compromise of the receiver’s private key will allow an adversary to masquerade as the
receiver in future key establishment transactions, and compromises all keying material
transported to the receiver in both past and future transactions.

101

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

In the key confirmation case, if one assumes that the transported keying material includes a
MacKey that is (as required by this Recommendation) unique to the particular KTS-OAEP-
receiver-confirmation transaction between U and V, then by successfully comparing the received
value of MacTagy with its own computation, the sender (U) can obtain these assurances:

1. the receiver (V) has correctly recovered (at least the MacKey portion of) K from C;
2. both parties agree on the values of IDv, IDy, and C;

3. V possesses the correct value of the private key corresponding to the public key used in
the transaction; and

4. V has actively participated in the transaction.

If U has transported the same K to multiple parties, and/or (in violation of this Recommendation)
U has re-used a MacKey, then the return of a correct MacTagy value to U does not provide
assurance that V has correctly obtained the keying material (or anything else). Anyone in
possession of (at least the MacKey portion of) K could have computed MacTagy.

9.3 KTS-KEM-KWS Family: Key Transport using RSA-KEM-KWS

The KTS-KEM-KWS family of key transport schemes is based on the RSA-KEM-KWS encrypt
and decrypt operations. These operations employ the asymmetric RSASVE secret-value
encapsulation operations and an approved KDF to establish a key-wrapping key that is
transaction-specific. The key-wrapping key is used with an approved symmetric key-wrapping
algorithm to wrap (and unwrap) the keying material to be transported. In this family, only party
V’s key pair is used.

The key transport schemes of this family have the following general form:

1. Using the RSA-KEM-KWS.ENCRYPT operation, party U (the sender) first generates a
secret byte string Z and a corresponding ciphertext component by employing the
RSASVE.GENERATE operation and the public key-establishment key of party V (the
receiver). The byte string Z (along with OtherInfo available to U and V) is then used as
input to the KDF, to derive a transaction-specific key-wrapping key (KWK) of an
appropriate, agreed-upon bit length kwkBits. The keying material to be transported is
wrapped using the KWK and the symmetric key-wrapping algorithm to produce a second
ciphertext component. The two ciphertext components are sent to party V.

2. Using the RSA-KEM-KWS Decrypt operation, Party V begins by employing the
RSASVE.RECOVER operation and its private key-establishment key to obtain Z from the
first ciphertext component. Party V then employs the KDF (with inputs Z, kwkBits, and
OtherlInfo) to derive the same KWK that was used by U. The KWK and the symmetric
key-unwrapping algorithm are used to obtain the transported keying material from the
second ciphertext component.

3. If key confirmation is incorporated, the transported keying material consists of a
transaction-specific (random) MacKey followed by KeyData. The MacKey portion of the
keying material and an approved MAC algorithm are used by each party to compute a

102

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

MacTag (of an appropriate, agreed-upon length) on what should be the same MacData
(see Section 6.6.1). The MacTag computed by the key-confirmation provider (V) is sent
to the key-confirmation recipient (U). If the value of the MacTag sent by V matches the
MacTag value computed by U, then U obtains a confirmation of the success of the key-
transport transaction.

Common components of the schemes in the KTS-KEM-KWS family are listed in Section 9.3.2.
Two schemes are then defined:

1.

2.

KTS-KEM-KWS-basic, the basic scheme without key confirmation (see Section 9.3.3).

KTS-KEM-KWS-receiver-confirmation, a variant with unilateral key confirmation
from the receiver (Party V) to the sender (Party U) (see Section 9.3.4).

For the security attributes of the KTS-KEM-KWS family, see Section 9.3.5.

9.3.1
1.

KTS-KEM-KWS Family Prerequisites

The receiver shall have been designated as the owner of a key-establishment key pair that
was generated as specified in Section 6.3. The receiver shall obtain assurance of the
validity of its key pair as specified in Section 6.4.1, and shall obtain assurance of its
possession of the correct value for its private key as specified in Section 6.5.1.

The sender and receiver shall have agreed upon an approved key derivation function, an
approved hash function appropriate for use with the key derivation function, and
associated parameters (see Sections 5.1, 5.9, and 6.2.3).

The sender and receiver shall have agreed upon an approved symmetric key-wrapping
algorithm and key length (kwkBits) employing an approved block cipher algorithm
whose security strength is equal to or greater than the target security strength of the
applicable key transport scheme (see Sections 5.7 and 7.2.3).

Prior to or during the transport process, the sender and receiver shall have either agreed
upon the form and content of the additional input 4 (a byte string to be cryptographically
bound to the transported keying material in that the cipher is a cryptographic function of
both values), or agreed that 4 will be an empty string (see Section 9.1 above).

When key confirmation is used, the sender and receiver shall have agreed upon an
approved MAC algorithm and associated parameters (see Sections 5.2 and 6.2.3).

Prior to or during the key transport process, each party shall obtain the identifier that is to
be associated with the other party during the key transport transaction. The sender shall
obtain the public key-establishment key that is bound to the receiver’s identifier in a
trusted manner (e.g., from a certificate signed by a trusted CA). The sender shall obtain
assurance of the validity of this public key as specified in Section 6.4.2.

Prior to or during the key transport process, the sender shall obtain assurance that the
intended receiver is (or was) in possession of the private key corresponding to the public
key-establishment key used during the transaction, as specified in Section 6.5.2.

Prior to or during the key transport process, the keying material to be transported shall be
determined as specified in Section 9.

103

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

9.3.2 Common Components of the KTS-KEM-KWS Schemes
The schemes in the KTS-KEM-KWS family have the following common component:

1. RSA-KEM-KWS: Consisting of an encryption operation RSA-KEM-KWS.ENCRYPT
and a decryption operation RSA-KEM-KWS.DECRYPT (see Section
7.2.3).

9.3.3 KTS-KEM-KWS-basic

KTS-KEM-KWS-basic is the basic key transport scheme in the KTS-KEM-KWS family
without key confirmation.

Let (PubKeyy, PrivKeyy) be party V’s key-establishment key pair. Let K be the keying material
to be transported from party U to party V. The parties shall perform the following or an
equivalent sequence of steps, which are also illustrated in Figure 16.

Party U shall execute the following steps in order to transport keying material to party V.
Party U Actions:

1. Using party V’s public key-establishment key PubKeyy, the length kwkBits of key to be
used for key-wrapping, keying material K, and the additional input A, generate a
ciphertext C (see Section 7.2.3.2), which includes an encrypted KWK as Cy and the
wrapped keying material as Ci:

C = RSA-KEM-KWS.ENCRYPT(PubKeyv, kwkBits, K, A).
2. Send the ciphertext C to party V.
Party V shall execute the following steps when receiving keys transported from party V.
Party V Actions:
1. Receive the transported keying material.

2. Using the ciphertext C, the private key-establishment key PrivKeyy, the length kwkBits of
the key-wrapping key, and the additional input 4, recover the keying material K (see
Section 7.2.3.3):

K =RSA-KEM-KWS.DECRYPT(PrivKeyy, C, kwkBits, A).
If the decryption operation outputs an error indicator, output an error indication and stop.

Output: The byte string K or an error indicator.

104

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Sender (Party U) Receiver (Party V)
K to be transported (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key «— — — —
C = RSA-KEM-KWS. C K = RSA-KEM-KWS.
ENCRYPT(PubKeyy, K, A) > DecRrYPT(PrivKeyy, C, A)

Figure 16: KTS-KEM-KES-basic Scheme

9.3.4 KTS-KEM-KWS Key Confirmation

The KTS-KEM-KWS-receiver-confirmation scheme offers receiver confirmation and is based
on the KTS-KEM-KWS-basic scheme.

9.3.4.1 KTS-KEM-KWS Common Components for Key Confirmation
The components for KTS-KEM-KWS-receiver-confirmation are the same as for KTS-KEM-
KWS-basic (see Section 9.3.2), plus the following:

2. MAC: A message authentication code algorithm (see Section 5.2).

a. the MacKeyLen: length in bytes of the MacKey (see Table 1 in Section
6.2.3).

b. the MacTagLen: length in bytes of the MacTag (see Table 1 in Section
6.2.3).

For this scheme, the length of the keying material shall be at least MacKeyLen, where
MacKeyLen is the length of the MacKey (see Section 6.2.3) and usually longer so that other
keying material is available for subsequent operations. The MacKey shall be the first
MacKeyLen bytes of the keying material and shall be used only for key confirmation.

9.3.4.2 KTS-KEM-KWS-receiver-confirmation
KTS-KEM-KWS-receiver-confirmation is a variant of KTS-KEM-KWS-basic with unilateral
key confirmation from party V to party U.

Figure 17 depicts a typical flow for the KTS-KEM-KWS-receiver-confirmation scheme. In this
scheme, party V, the receiver, and party U, the sender, assume the roles of key confirmation provider
and recipient, respectively.

To provide (and receive) key confirmation (as described in Section 6.6.1), both parties set
EphemDatay = Null, and EphemDatay = C:

105

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Party V provides MacTagyto party U (as specified in Section 6.6.1, with P =V and R = U),
where MacTagy is computed (as specified in Section 5.2.1) using

MacDatay=“KC 1 V” || IDy || IDy || Null || C{ || Text}.

Party U uses the identical format and values to compute MacTagy and then verifies that the
newly computed MacTagy matches the MacTagy value provided by party V.

The MacKey used during Key Confirmation shall be zeroized by Party V immediately after the
computation of MagTagy, and by Party U immediately after the verification of the received
MacTagy or a (final) determination that the received MacTagy is in error.

Sender (Party U) Receiver (Party V)
K = MacKey Il KeyData (PubKeyy, PrivKeyy)
Obtain party V's public key- PubKeyy
establishment key “— — — —
C = RSA-KEM-KWS. C K = RSA-KEM.KWS.
ENCRYPT(PubKeyy, K, A) > DeCRYPT(PrivKeyy, C, A)
MacKey || KeyData = K
MacTagy =? MAC(MacKey, MacTagy MacTagy = MAC(MacKey,
MacTagLen, MacDatay) < MacTagLen, MacDatay)

Figure 17: KTS-KEM-KWS-receiver-confirmation Scheme

9.3.5 KTS-KEM-KWS Security Properties

In each scheme included in this family, only the identifier of V (the receiver) is bound to a public
key-establishment key. U (the sender) has assurance that no unintended party can recover the
shared secret Z, and hence the KWK, from the ciphertext component Cy, and then use KWK to
obtain the keying material K from the ciphertext component C; (without the compromise of some
private information).

The receiver, however, has no such assurance. In particular, V has no assurance as to the
accuracy of the identifier claimed by the sender and, therefore, has no assurance as to the true
source of the ciphertext C = Cy || C; (or the transported K).

Due to the sender’s unilateral selection of K, U can obtain assurance that fresh keying material
has been transported. V has no such assurance.

A compromise of the receiver’s private key will allow an adversary to masquerade as the
receiver in future key establishment transactions, and compromises all keying material
transported to the receiver in both past and future transactions.

106

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

In the key confirmation case, if one assumes that the transported keying material includes a
MacKey that is (as required by this Recommendation) randomly generated for the particular
KTS-KEM-KWS-receiver-confirmation transaction between U and V, then by successfully
comparing the received value of MacTagy with its own computation, the sender (U) can obtain
these assurances:

1. 'V has correctly recovered Z, and hence the KWK;

2. both parties agree on the values of IDv, IDy, and C;

3. the receiver (V) has correctly recovered (at least the MacKey portion of) K from C;
4

.V possesses the correct value of the private key corresponding to the public key used in
the transaction; and

5. V has actively participated in the transaction.

The use of a transaction-specific (random) Z (and hence the transaction-specific KWK) provides
assurance to U that both Cy and C; are also random for a given transaction, even if K is not.
However, if U has transported the same K to multiple parties, and/or (in violation of the
Recommendation) U has re-used a MacKey, then the return of a correct MacTagy value to U
does not provide assurance that V has correctly obtained the keying material (or anything else).
Anyone in possession of (at least the MacKey portion of) K could have computed MacTagy.

10 Key Recovery

For some applications, the secret keying material used to protect data or to process protected data
may need to be recovered (for example, if the normal reference copy of the secret keying
material is lost or corrupted). In this case, either the secret keying material or sufficient
information to reconstruct the secret keying material needs to be available (for example, the keys
and other inputs to the scheme used to perform the key establishment process).

For example, the following information that is used during key establishment may need to be
saved:

1. One or both keys of a key pair, as needed.
2. The nonce(s),

3. The ciphertext.
4. Additional input.
5. OtherInfo,

6. A symmetric key.

General guidance on key recovery and the protections required for each type of key is provided
in the Recommendation for Key Management [7].

107

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

11. Implementation Validation

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a
validation program for this Recommendation, a vendor shall have its implementation tested and
validated by the CMVP in order to claim conformance to this Recommendation. Information on
the CMVP is available at http://csrc.nist.gov/cryptval/.

An implementation claiming conformance to this Recommendation shall include one or more of
the following capabilities:

1. Key pair generation as specified in Section 6.3.
2. Explicit public key validation as specified in Section 6.4.3.

3. A key agreement scheme from Section 8, together with an approved key derivation
function from Section 5.9. Other key derivation methods with specific protocols may be
temporarily allowed for backward compatibility if agreed upon by the participating
entities (i.e., party U and party V). These other allowable methods and the protocols that
they may be used with are referenced in FIPS 140-2 Annex D. Documentation shall
include how assurance of private key possession and assurance of public key validity are
expected to be achieved by both the owner and the recipient.

4. A key transport scheme as specified in Section 9, together with an approved random bit
generator, an approved hash function, an approved symmetric key-wrapping algorithm,
and an approved key derivation function from Section 5.9 for RSA-KEM-KWS based
schemes. Other key derivation methods with specific protocols may be temporarily
allowed for backward compatibility if agreed upon by the participating entities (i.e., party
U and party V). These other allowable methods and protocols are referenced in FIPS 140-
2 Annex D.

An implementer shall also identify the appropriate specifics of the implementation, including:

1. The security strength(s) of supported cryptographic algorithms; this will determine the
parameter set requirements (see Table 1 in Section 6.2.3),

2. The hash function to be used (see Section 5.1),

3. The MacKey length(s) (see Table 1 in Section 6.2.3),

4. The MacTag length (see Table 1 in Section 6.2.3),

5. The key establishment schemes available (see Sections 8 and 9),

6. The key derivation function to be used if a key agreement scheme is implemented,
including the format of OtherInfo (see Section 5.9),

7. The type of nonces to be generated (see Section 5.6).

8. How assurance of private key possession and assurance of public key validity are
expected to be achieved by both the owner and the recipient.

108

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

9. If a key transport scheme is implemented, indicate whether a capability is available to
handle additional input.

109

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Appendix A: Summary of Differences between this
Recommendation and ANS X9.44 (Informative)

This list is informational and not meant to be exhaustive, but is intended to summarize important
differences between this Recommendation and ANS X9.44. In general, this Recommendation
can be seen as being more restrictive than ANS X9.44. The list of differences is as follows:

1. For purposes of validating an implementation of the schemes in this Recommendation
durring an implementation validation test (under the NIST Cryptographic Algorithm
Validation System), the value of MacData is set to the string “Standard Test Message”,
followed by a 128-bit field for a nonce. The default value for this field is all binary zeros.
Different values for this field will be specified during testing. This is for the purpose of
testing when no key confirmation capability exists. ANS X9.44 does not address
implementation validation at this level of detail.

2. ANS X9.44 allows the public key exponent e to be as small as 3, whereas this
Recommendation requires that e be at least 65537.

3. ANS X9.44 requires that separate keys be used for key transport and key agreement. This
Recommendation allows the same key to be used for both purposes.

4. Regarding the key derivation function (KDF):

a.

This Recommendation specifies two approved KDFs, the concatenation KDF
specified in Section 5.9.1 and the ASN.1 KDF specified in Section 5.9.2.
Additional KDFs may be allowed for a transition period.

ANS X9.44 provides two forms of a concatenation KDFs, KDF2 and KDF3.
KDF2 is compatible with the concatenation KDFs specified in IEEE 1363[13],
IEEE 1363a [14], ANS X9.42 [9], and ANS X9.63[11]. KDF3 can be used in a
mode that is compatible with this Recommendation. The significant difference
between KDF2 and KDF3 is that in KDF2, the counter is hashed after the shared
secret, whereas in KDF3, the counter is hashed before the shared secret.

The approved KDFs in this Recommendation require the input of the identifiers
of the communicating parties; such information is allowed, but not required, in
ANS X9.44.

In this Recommendation, the shared secret is zeroized after a single call to a key
derivation function, before the key agreement scheme releases any portion of the
DerivedKeyingMaterial for use by relying applications.. The intent in ANS X9.44
is to prohibit the re-use of the shared secret, but the zeroization requirement is not
specifically stated. An implication of this Recommendation’s requirement
concerning zeroization is that all of the keying material directly derived from the
shared secret must be computed during one call to the KDF.

110

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

5. ANS X9.44 requires the use of X9-approved key-wrapping algorithms, whereas this
Recommendation requires the use of NIST-approved/allowed key-wrapping algorithms.
ASC X9 allows both AES and TDES key wrap algorithms [12], whereas NIST currently
specifies only AES for key wrapping [8].

6. This Recommendation uses a more stringent definition of key confirmation than does
ANS X9.44. ANS X9.44 does not require that the confirmation provider be authenticated.
Therefore, schemes that qualify as offering key confirmation under ANS X9.44 may not
qualify as offering key confirmation under this Recommendation. For example, the kasl-
bilateral-confirmation scheme of ANS X9.44 does not exist in this Recommendation,
since the identity of the initiator is not authenticated.

7. The KAS2 schemes are not provided in ANS X9.44. However, they are included in this
Recommendation to provide schemes that are similar to the C(1,1) schemes in SP 800-
56A.

111

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Appendix B: Data Conversions (Normative)

B.1 Integer-to-Byte String (I12BS) Conversion

Input: A non-negative integer C and the intended length # of the byte string satisfying
28}1 > C
Output: A byte string S of length n bytes.

1. LetS, S, ..., S, be the bytes of S from leftmost to rightmost.

2. The bytes of S shall satisfy:

C =228 fori=11ton.

B.2 Byte String to Integer (BS2l) Conversion

Input: A byte string S (SLen is used to denote the length of the byte string).
Output: A non-negative integer C.
Steps:

1. LetS; S ... Sszen be the bytes of S from first to last, and let xg;.,; be the integer value of
the octet x; for 1 < i < SLen, where the integer value is represented as a byte (i.e., an
eight-bit string), with the most significant bit first (i.e., on the left).

2. Letx= XSLen—1 ° 256 SLen-1 + XSteno * 256 SLen-2 + ... +tx 256 + X0.

3. Output x.

112

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

Appendix C: Prime Factor Recovery (Normative)

The following algorithm recovers the prime factors of a modulus, given the public and private
exponents. The algorithm is based on Fact 1 in [18].

Function call: RecoverPrimeFactors(n, e, d)
Input:

1. n: modulus
2. e: public exponent
3. d: private exponent

Output:

1. (p, q): prime factors of modulus

Errors: “prime factors not found”

Assumptions: The modulus 7 is the product of two prime factors p and ¢; the public and private
exponents satisfy d x e = 1 (mod A(n)) where M(n) =LCM(p—1,g—1)

Process:
1. Letk=dxe—1.If kis odd, then go to Step 4.

2. Write kas k=r 2", where r is the largest odd integer dividing k, and ¢ > 1.
3. Fori=1to 100 do:
a. Generate a random integer g in the range [0, n—1].
b. Lety =g " mod n.
c. Ify=1ory=n-1,then go to Step g.
d.Forj=1to¢-1do:
I. Letx=y?modn.
II. Ifx=1,gotoStep5

III. Ifx=mn-1, goto Step3.7.

IV. Lety=nx.

113

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

e. Letx =y > mod n.

f. Ifx=1, go to Step 5.

g. Continue.
4. Output “prime factors not found” and stop.
5. Let p=GCD(y — 1, n) and let g = n/p.
6. Output (p, q) as the prime factors.

Notes:

1. According to Fact 1 in [18], the probability that one of the values of y in an iteration of
Step 3 reveals the factors of the modulus is at least 1/2, so on average, at most two
iterations of that step will be required. If the prime factors are not revealed after 100
iterations, then the probability is overwhelming that the modulus is not the product of two
prime factors, or that the public and private exponents are not consistent with each other.

2. The algorithm bears some resemblance to the Miller-Rabin primality testing algorithm
(see, e.g., ANS X9.80).

3. The order of the recovered prime factors p and g may be the reverse of the order in which
the factors were generated originally.

114

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:

Using Integer Factorization Cryptography
December, 2008

Appendix D: References (Informative)

[10]

[11]

[12]

[13]
[14]

[15]

[16]

FIPS 140-2, Security requirements for Cryptographic Modules, May 25, 2001.
FIPS 140-3 is currently under development.

FIPS 180-3, Secure Hash Standard, June 2007 (Draft).

FIPS 186-3, Digital Signature Standard, March 2006 (Draft)

FIPS 197, Advanced Encryption Standard, November 2001.

FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008.

NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication, May 2005.

NIST SP 800-57-Part 1, Recommendation for Key Management, August 2005.
AES Key Wrap Specification, NIST, November 16, 2001.

ANS X9.42-2001, Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography.

[ANS X9.44 Public Key Cryptography for the Financial Services Industry: Key
Establishment Using Integer Factorization Cryptography, August 24, 2007.

ANS X9.63-2001, Public Key Cryptography for the Financial Services Industry:
Key Agreement and Key Transport Using Elliptic Curve Cryptography.

ANSI X9.102-2008, Symmetric Key Cryptography for the Financial Services
Industry — Wrapping of Keys and Associated Data.

IEEE 1363-2000, IEEE Standard Specifications for Public Key Cryptography.

IEEE 1363a-2004, IEEE Standard Specifications for Public Key Cryptography -
Amendment 1: Additional Techniques.

A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding
(OAEP) as Standardized in PKCS #I v2.0, J. Manger, In J. Kilian, editor,
Advances in Cryptology — Crypto 2001, pp. 230 — 238, Springer Verlag, 2001.

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. R.
Rivest, A. Shamir and L. Adleman, Communications of the ACM, 21(2), pp. 120 —
126, February 1978.

115

Draft NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes:
Using Integer Factorization Cryptography
December, 2008

[17] The Security of all RSA and Discrete Log Bits, J. Hastad and M. Néslund. Proc. of
the 39th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 510

— 521, 1998.

[18] Twenty Years of Attacks on the RSA Cryptosystem, D. Boneh, Notices of the
American Mathematical Society (AMS), 46(2), 203 —213. 1999.

116

