i M79-44D

PROPOSED | :
TECHNICAL EVALUATION CRITERIA
FOR
TRUSTED COMPUTER SYSTEMS

G. H. Nibaldi

25 October 1979

‘é‘:\iﬁ
T ALY
y* v
id
THE=
M IT RE
Bedtord, Massachusetts
Contract No: AF19628-80-C-0001 ’Approved for public release."
~ Contract Sponser: OUSDRE (Cal) : Distribution unlimited.

Department D-75

ABSTRACT

The DoD has established a Computer Security Initiative to foster
the wide-spread availability of trusted computer systems. An essential
element of the Initiative is the identification of criteria and
guidelines for evaluating the internal protection mechanisms of
computer systems, This report documents a proposed set of technical
evaluation criteria. These criteria and any evaluation process
that they might imply represent one approach to how trusted systems
might be evaluated.

The information in this report is made available to stimulate
technical discussion among industry and government personnel.
Procedures or criteria formally coordinated and adopted by the
Department of Defense in the future may differ from those proposed
here. The views and conclusions contained in this paper are those
of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the Department
of Defense or the United States Government,

iii

ACKNOWLEDGMENTS

The author would like to thank the people who helped in
finalizing the ideas presented in this paper: Jack Adams (IBM),
Pete Tasker, Steve Walker, (OUSD C3I), and the participants of the
Secure System Evaluation session of the 1979 Summer Study on Air
Force Computer Security.

Special thanks go to George Miller for his editorial help and
to Karen Borgeson for her secretarial support while learning a
new text processing system,

iv

TABLE OF CONTENTS

Section
LIST OF ILLUSTRATIONS
1 INTRODUCTION

BACKGROUND
OVERVIEW

2 EVALUATION FACTORS
PRIMARY FACTORS

Policy
Mechanism

Assurance
SUPPORTING FACTORS
3 LEVELS OF PROTECTION

LEVEL 0: NO PROTECTION
LEVEL 1: LIMITED CONTROLLED SHARING

Protection Policy

Specific Protection Mechanisms
Assurance

Residual Risk

Summary
LEVEL 2: EXTENSIVE MANDATORY SECURITY

Protection Policy

Specific Protection Mechanisms
Assurance

Residual Risk

Summary

12

17

i8

20
21

21
21
21
22
22

24

24
24
25
25
25

TABLE OF CONTENTS (Continued)

LEVEL 3: STRUCTURED PROTECTION MECHANISM

Protection Policy

Specific Protection Mechanism
Assurance

Residual Risk

Summary

LEVEL 4: DESIGN CORRESPONDENCE

Protection Policy

Specific Protection Mechanisms
Assurance

Residual Risk

Summary

LEVEL 5: IMPLEMENTATION CORRESPONDENCE

Protection Policy

Specific Protection Mechanisms
Assurance

Residual Risk

Summary

LEVEL 6: OBJECT CODE ANALYSIS

Protection Policy

Specific Protection Mechanisms
Assurance

Residual Risk

Summary

CONCLUSION

vi

27

27
27
27
28
28

30

30
30
30
31
31

33

33
33
33
34
34

36

36
36
36
37
37

39

REFERENCES

DISTRIBUTION LIST

TABLE OF CONTENTS (Concluded)

vii

41

43

Figure

O 0~ O 1w N

LIST OF ILLUSTRATIONS

Factors of Trusted Operating Systems
Access Control vs. Flow Control
Correspondence Chain

Level 1: Limited Controlled Sharing
Level 2: Extensive Mandatory Security
Level 3: Structured Protection Mechanism
Level 4: Design Correspondence

Level 5: Implementation Correspondence

Level 6: Object Code Analysis

viii

SECTION 1

INTRODUCTION

Trusted computer systems are operating systems capable of
preventing users from accessing more information than that to which
they are authorized. Such systems are in great demand as more
processing is entrusted to computers while less information should
be shared by all the system's users. With this demand comes a need
to ascertain the integrity of computer systems on the market. As
part of the Department of Defense Computer Security Initiative [1],
a plan has been devised for this purpose. Under this plan, computer
systems will undergo "laboratory evaluations," where their
suitability for different types of operational environments can be
analyzed., A proposed set of evaluation criteria to be used in such
an analysis is documented in this report.

BACKGROUND

In multi-user systems, the underlying assumption has been that
malicious users or their programs may attempt to access information
to which they would not normally be entitled. Operating systems¥
can potentially confine users so that unauthorized access cannot
occur. On the other hand, if incorrectly implemented, they have the
potential to undermine any safeguards that might have been built
into user programs or applications. By examining the strengths and
weaknesses of a computer's operating system, one can draw
conclusions about the suitability of the system for diverse
environments (characterized, for instance, by degree of data
sensitivity, criticality of functions, user community). Thus, the
stronger the operating system, the less vulnerable the system to
malicious attack.

A synopsis of the general computer security problem as well as
the seminal work on evaluation criteria is reported by Lee et al.
[1]. The reader is referred to that report for a historical
perspective. The work that led to this report entailed fleshing out
the details of an initial set of evaluation criteria presented in
that document [1]. Specifically, the task was to:

¥"Operating system" has also been referred to variously as execu-
tive, monitor, and supervisor. As used here, it includes the
underlying hardware base in addition to software.

1

1. Identify the protection-related aspects of operating
systems--not only the protection services but also the
proof that the services are sufficient;

2. Determine their relative importance;

3. Establish thresholds that clearly distinguish the level of
an operating system by the quality of its protection; and

4. Determine the environments that operating systems at each
level could support.

OVERVIEW

This report will cover the first three points, by identifying
the features of computer systems that contribute to internal
protection,* and from them devising criteria for system evaluation.
The fourth point is discussed by Lee et al. [1].

The protection-related features fall into three categories:
policy, mechanism, and assurance. Policies provide the access rules
under which the system is expected to operate. Mechanisms provide
the foundation for policy enforcement. Assurances offer evidence
that the mechanisms operate correctly.

The criteria are presented for seven hierarchical "levels of
protection"--the intent is that the higher the level, the greater
the system's protection. With the present state of technology, no
one can claim absolute confidence in a computer's controls.

Hardware limitations, the complexity of software, and the
uncertainty of an environment all increase the likelihood of errors.
The evaluation criteria described here attempt to address the known
vulnerabilities of computer systems. These criteria are expected to
grow and mature with our increasing understanding of computer
protection.

¥The protection of information in computer systems is commonly re-
ferred to as "data security."

SECTION 2

EVALUATION FACTORS

Many factors play a role in the perceived quality of internal
protection of computer systems. Three general areas will be
considered:

1. Protection policy,

2. Mechanisms contributing to effective enforcement of the
policy, and

3. Assurances that the mechanisms are indeed functioning.

The various aspects of policy, mechanism, and assurance, and their
relationship to each other, are depicted in figure 1,

PRIMARY FACTORS
Policy

Commitment to a protection policy is a prerequisite for a
secure system. Without a clear statement of policy there is no way
to determine if the system will meet even minimum requirements. In
this section we review the basic elements of protection policy.

A protection policy outlines a set of guidelines for
determining how computer resources in general and information in
particular may be shared. The policy is presented in terms of
well-defined rules that conform to some notion of "access"--by whom,
to what, under what conditions, and how. Another way to define a
protection policy is in terms of service: a protection policy
prescribes the manner and conditions under which a subject (e.g.,
user, process) is served by the system. If we view the computer
system as an abstract, high-level machine, the services are
operations to the system, equivalent to high-level machine
instructions. The system determines, based on the policy, whether
or not to perform the operation. It might allow a user to log in,
execute a program, access an I/0 device, or halt the machine. The
conditions for performing the service may depend upon a
characteristic (or state) of the subject or an object (e.g., files,
tapes) involved in the service, upon the state of the system (e.g.,
number of users logged in), or upon some external factor (e.g., time
of day).

|A56580

ASSURANCE

VERIFICATION

POLICY

ENFORCER

DETECTION

MECHANISM

Figure 1. Factors of Trusted Operating Systems

If the service involves an information, or data, object (e.g.,
files, I/0 devices) the policy will be referred to as a data policy.
A data policy prescribes the manner and conditions under which a
subject interacts with a data object. The manner of interaction
defines operations on the objects. Examples are: read a file,
access an I/0 device, update a file, or change the owner of a file.
The operations may concern either the contents of the object (as in
read a file) or the state of the object (as in change the owner).
Two distinct but significant aspects of data policy are recognized
[2,3]: access control and flow control. Access control relates to
the manipulation of objects as containers of information (e.g.,
reading a file); flow control addresses how the contents of the
objects may be passed from one object to another (e.g., copying a
file). The conditions of a data policy specify either access
control or the more restrictive flow control. The distinction
between access and flow is depicted in figure 2.

If a service affects the "manner and conditions" of service,
the policy will be called an authorization policy. An authorization
policy prescribes the manner and conditions under which subjects may
set authorizations for a given subject and object. For instance,
there may be an authorization policy that allows the owner of an
object to grant others access to that object.

An authorization policy may be characterized by degree of
locality of control: a mandatory policy is externally pre-
determined (e.g., by law); a discretionary policy implies individual
judgment (i.e., at the "discretion" of the user). A policy can be
both mandatory and discretionary if authorizations may only be
changed within preset limits.

Three specific policies that factor into an evaluation are:
1. A policy on information compromise (security policy);

2. The policy practiced within the Department of Defense and
in the intelligence community (DoD policy); and

3. A policy regarding denial of service conditions.

Security Policy

A security policy is a data policy on reading system objects.
As such, it is specifically concerned with unauthorized disclosure
of information.

A mandatory security policy is one in which the ability to read
objects is administratively controlled. For instance, users might

5

FILE X READ X

l/o-r——— FILE X

A\
FILE Y SMITH
COPY Y TO X
B
FILEY
FILE Z
JONES
JONES
ACCESS. Jones can be permitted to FLOW. Denied access to file Y, Smith
read file Y and write in file X; he has gets confederate Jones to make a copy;
no access to file Z. flow controls could prevent this.

@ 1979 ACM 0010-4892/79/0900-0227 $00.75
ACM Computing Surveys, Vol. I, No. 3, September 1979
Reprinted by permission of the Association for Computing Machinery

Figure 2. ACCESS CONTROL VS FLOW CONTROL

be assigned labels dependent on their titles (e.g., a personnel manager),
and then only be allowed to read access to the object if they have the
appropriate title,

Discretionary security policies tend to be more flexible, as
shown in the owner example above.

The nature of a security compromise will depend on the data policy.
An access control violation occurs when the system is unable to prevent
data from being directly read by unauthorized users. A flow control
violation occurs when the system cannot prevent information from being
channeled from its original data object into one that can be read
directly by an unauthorized user,

Note that the major threat addressed by this policy is compromise,
or unauthorized disclosure, not sabotage--unauthorized modification
(which probably occurs because those in the people~paper world assume
all classified information is available elsewhere in triplicate).
Sabotage has been described as an "integrity" problem, and is discussed
by Biba [4].

DoD Policy

While laws concerning protection policies in computer systems
throughout most of the Federal Government and in the commercial world
are being debated, specific policies already exist within the national
security community (DoD and the intelligence agencies), and indeed have
even been unambiguously (i.e., mathematically) stated, or "modeled,"
so that conformance to the policies by computer systems can be more
readily determined [5].

The DoD policy on data protection in automatic data processing
systems is a mandatory security policy similar to the strict guidelines
for the handling of classified papers ([6], [7], [8]). Here a major
concern is on the dissemination of information--individuals should be
allowed to access only the information for which they are cleared. 1In
addition to the clearance level (Unclassified, Confidential, SECRET,

TOP SECRET), an individual must have a need-to-know which may include
approval for access to special categories or compartments of information.
Together these form a partial ordering. Information is similarly labeled.
(For purposes of this paper, an element of the partial ordering will

be called the security level of the corresponding subject or object.)
When multilevel information is to be processed concurrently in a

computer system, two conditions which may be used to enforce the

security policy are that in general:

1. A subject can read a data object only if the subject has a
security level greater than or equal to that of the object;

7

2. A subject can write a data object only if the subject has a
security level equal to that of the object. This condition
is necessary to enforce a flow policy that would prevent
information from being copied into a place (object)
accessible by a subject with a lower security level.

In addition to the access and flow controls specific to data
protection, a requirement exists for the auditing of protection-
related events (described later in the document), and for the

generation of labels on printed output stating the security level of
the data.

Denial of Service

A denial of service condition results when a user is prevented
from receiving the services to which he or she is entitled. It can
be caused unintentionally if the operating system has a bug or if a
user unknowingly introduces a bug into the system. It can be caused
intentionally if the system was not designed to handle denial of
service or if a malicious user introduces a bug into the system.
For example, a user may be prevented from acquiring long-term
storage space because it has been deliberately depleted, or
execution time may be denied because the system "crashes."
Alternatively, a user may be thwarted by more direct interference,
such as having files deleted or modified in undesirable ways. A
more insidious denial of service activity occurs when a malicious
program masquerades as the normal service and causes a user to
unknowingly reveal private information. (The masquerader might in
addition perform the expected service, and thereby remain
undetected.)

In order to counter the most general denial of service threat,
the entire system must always operate correctly--applications
software as well as any utility assistance from the operating system
can never make mistakes or cause errors that will hamper the user
from completing the task at hand. Because techniques for verifying
the correctness of arbitrary programs are not yet available,
addressing the general denial of service threat will be exceedingly
difficult. However, an operating system should be able to defend
against attacks involving resource exhaustion and masquerading. For
instance, the protection policy might specify, "A subject can only
create new objects if a system-maintained quota for the subject is
not spent." Thus, if the quota is exhausted, the subject will be
unable to exhaust another user's resources.

Mechanism

"Mechanism" refers to the features of a computer system that
together enforce the protection policy. These features of the
computer system may include algorithms, data bases, and protection
hardware. To be effective they must be complete, correct, and
self-protecting.

Nibaldi [9] describes an approach to building a computer system
to maximize the likelihood that the resulting system is faithful to
the policy. The approach requires identifying all protection-
related functions, segregating them from the rest of the computer
system functions, and then isolating them to prevent tampering. The
result is called a "Trusted Computing Base" (TCB). It is a
consequence of computer security research that culminated in
security kernel technology [10]. As the protection-critical portion
of the operating system, it should be completely able to mediate
access to services independently of other software, and above all,
be verifiable.

It must be noted that a TCB is defined as hardware (including
firmware and microcode) as well as software. A number of hardware
features have been identified that not only allow simpler software
(potentially easing verification), but also expedite access
mediation such as virtual segmented memory, capabilities, and user
I1/0. Hardware mechanisms are discussed by Tangney [11].

Four categories of protection mechanisms are considered:
prevention mechanisms, detection mechanisms, recovery mechanisms,
and mechanisms to support operations and maintenance.

Prevention

Prevention mechanisms actively work to implement the poliecy and
prevent breaches. The following areas are of particular importance:

Data protection refers to the mechanisms that directly
implement the relevant data (both access and flow) and authorization
policies.

System integrity refers to the ability of the operating system
or TCB to maintain its own integrity by protecting itself from
tampering. It includes the ability to protect users from each other
by providing virtual environments.

Denial of service mechanisms act to prevent denial of service
attacks through the operating system.

Authentication mechanisms are needed so the system can
reference the appropriate authorizations.* This area also includes
mechanisms that allow subjects to authenticate that they are dealing
with the system (as opposed to a masquerader), with specific
objects, and with other subjects.

Confinement describes a condition of subjects in virtual
isolation from other subjects and objects on the system., First
identified by Lampson [12], confinement channels occur when the
system resources are being shared. The reason they occur is that
the operating system can sighal information that is a direct result
of resource utilization. If such "leakage" channels are not
controlled, programs may use them to pass information in
unauthorized ways, violating flow policy.

Two methods of passing information in this way are "storage"
channels and "timing" channels. Storage channels involve shared
control variables that can be influenced by a sender and read by a
receiver, for instance when the information that the system disk is
full is sent to a process trying to create a file. Timing channels
also involve the use of resources, but here the exchange medium is
time. For example, modulation of scheduling time can be used to
pass information,

Storage channels can be detected using design verification
techniques; timing channels are not easily detected because they
depend on complex interactions of system and processes.

Detection

Detection mechanisms are passive policy enforcement devices.
While the prevention mechanisms attempt to intercept potential
violations, detection mechanisms monitor system activities, often
maintaining records to aid in damage assessment, limitation, and
recovery. Examples of detection mechanisms are time-of-use stamps,
alarms, and audit trails.

It has been argued that if a policy violation can be detected,
it might also be prevented. However, the detection mechanisms may

¥The viability of the user authentication technique (e.g., pass-
words, fingerprints) may be difficult to measure. It is clear that
if a password approach is used, the method for secreting passwords
on the system (e.g., encryption) could be faulty and negate the ap-
proach. The method for judging the authentication approach will
remain subjective until techniques for such calibration are
developed.

10

include only very simple journaling programs that have no logic
whatsoever regarding the significance of the events they record.
Conceivably, certain violations could only be recognized after the
fact, through complex logical and statistical analyses.

The primary modes of detection are auditing and surveillance.

Auditing is the practice of keeping records of system
activities that have a bearing on the security of the system. Such
activities include users logging in and out, the granting and
revoking of access rights, and access violations, both attempted and
successful (e.g., suspicious use of a storage channel). In order to
monitor such activities, the system must be:

1. Designed so that critical actions are identifiable, and

2. Instrumented to follow these occurrences without seriously
hampering the normal activities of the system.

To be effective, the detection apparatus (mechanisms and audit logs)
must be secured, just as any other objects in the system. They
would otherwise be a target for a penetrator trying to cover his
tracks.,

Surveillance is the active monitoring of the activities on the
system in real-time. Surveillance facilities are especially useful
to personnel in charge of security.

Recovery

Recovery mechanisms apply to the system components dedicated to
restoring the secure state of the system in the event of an
unexpected fault. Fault conditions may be induced by software
(e.g., malicious user program) or hardware (failed component).

Software recovery may be impossible in some cases, for example,
when a secret file has been read by an uncleared user. In such a
case, there is no way to recover the compromised information. At
best the software can recover a secure state in which other such
violations would be prevented. However, where unauthorized
modification is involved, the system software may provide backup
capability.

Hardware recovery encompasses the broad area of fault tolerance
and fault recovery. Fault tolerance implies that a system can
sustain some amount of failure without propagating errors. The use
of error correcting codes to negate the effects of one-bit errors in
memory is one example of fault tolerance. Fault recovery extends

11

the fault tolerance concept to the restoration of the system in the
event of more extensive failures.

There is no known way of building the many components of a
computer system so they will always work. It is more reasonable to
assume that the system components will fail over some period of
time. Consequently, provisions must be made to counter the effects
of such a loss.

Simple detection of an erroneous situation is considerably more
straightforward than the subsequent identification and isolation of
the failed component for replacement or repair. The restart
operation is particularly critical, because it implies some
knowledge of the extent of error propagation which may be difficult
to determine for every possible fault. It also implies that
checkpoint or rollback states are preserved and are known to have
survived the fault.

The most successful approaches to the general fault recovery
problem have involved a number of redundant systems both for
diagnosing and recovering from the fault before error propagation
sets in. Methods of memory fault recovery might include, in the
software area, diagnostic programs, cross checking programs (e.g.,
data base checksums), and subverter programs (which deliberately
commit memory access violations to test access hardware).

Avizienis discusses fault recovery in more detail [13].

Operations and Maintenance

The operational and maintenance aspects fall in both the
mechanism and assurance categories because they consist of
procedures and programs that interplay to maintain the secure state
of the system. This category includes startup, backup and restore,
and configuration management procedures. Also included here are
utilities for system control, such as initiating and changing
authorizations, and setting quotas.

Assurance

Assurance features measure the degree of confidence that can be
placed in the protection mechanisms, both hardware and software,
Assurance can be legitimately gained through testing, but only after
a system has been built., Yet while complete, exhaustive testing is
possible for fairly small systems, it may be difficult, if not
impossible, to determine if an arbitrarily large and complex
operating system has been completely checked through the test

12

process. As Dijkstra has noted [14], tests are only useful in
determining the presence, not the absence, of bugs.

It is now accepted that care taken in the design and
implementation of the system will increase one's confidence in that
system. Also, developments in program verification will allow even
greater assurance. In particular, in the TCB approach the formal
methods can be applied to the TCR alone. If it indeed contains all
protection-relevant functionality, correct design and implementation
of the TCB provides an effective protection basis on which to build
the remaining software in the system.

Automated aids facilitate the development and validation of
operating systems by performing tasks with potentially fewer errors,
at a faster rate, and with greater ease than a human could perform
manually. Consequently, the use of such tools on a system will tend
to heighten confidence in the system. Editors, compilers, and
debuggers, for instance, are today considered absolutely necessary
to the program development process. Automation is expanding in the
validation area to include test case generation, automatic testing,
and program verification. It must be emphasized that the advantage
of automated tools lies in their support to a developer, not merely
in their existence, unless the tool itself can be validated.
Particularly in the case of testing and verification, the output of
the tools should be "human-readable," to allow independent
confirmation of the results.

Design

Certain elements of program design foster programs that not
only lend themselves readily to testing, but also support eventual
program verification. Among those elements are:

1. Top-down design, and
2. Design specifications.

Top~down design (also known as hierarchical design and stepwise
refinement [15]) requires first, identifying major functions, and
second, proceeding to identify the lesser functions that support the
major ones. At each step, one specifies input, processing, and
output, while avoiding implementation details. Top-down design
forces one to carefully consider the implications of major design
decisions at an early stage.

In such an approach it becomes useful to have graphical
pictures of the levels, and a formal approach to documenting the
interfaces between levels. A number of methodologies exist that

13

incorporate special graphic techniques and formal design languages
for recording design decisions in very precise specifications ([16],
[17]1, [18]. See especially [161]).

Design specifications provide a high-level view of the behavior
of the system. The top level specifications for an operating system
or a TCB describe the user interface--what is visible to expand
operating system or TCB software external to the TCB (i.e., the
behavior of the high-level machine). If the top level
specifications are written in a formal mathematical language, they
may be syntactically and semantically checked, and analyzed for
conformance to policy.

Lower level specifications aid top-down design by describing
subsequent layers of abstract machine. Lower level specifications
thereby facilitate the coding process and support program ‘
verification,

Implementation

The coding process can in itself increase the assurance level
if clarity and readability of the programs is stressed. A
beneficial side effect is more easily maintained programs. Top-down
design and design specifications provide a medium for facilitating
program implementation.

Three aspects of program implementation are noteworthy:
1. Modularity,

2. Abstract typing, and

3. Structured programming.

A modular program is one in which any logical portion can be
changed without affecting the rest of the design. By keeping the
modules fairly small (on the order of a printed page), they can be
easier to write and debug; easier to maintain and change; and easier
for a manager to control. But modular programming requires extra
work, discipline, and may possibly cost more CPU time and memory
space.

Modularity goes hand in hand with top-down design because the

design may be structured in a hierarchy of modules--those at a
higher level draw functionality from the modules at the next lower
level,

14

Abstract typing is a concept that also draws on the module
approach. A system may be designed such that the logic involving a
particular type of object (e.g., I/0) is isolated in a special
module with distinct interfaces. If other modules must manipulate
an object of that type (in this case, an I/0 device), they must
invoke the appropriate type handler module. Implementation details
can be hidden in a module; if they must be changed at some later
time, the effect on the rest of the system will be minimized.

Structured programming is a philosophy of constructing programs
in such a way that their logic is easily followed. It includes the
concept of modularity, but also well-structured branching and
control statements. In structured programs, all processing must
consist of straight-line statements or function calls (where
functions have a single entry and exit point), if-then-else
statements, and looping construects. (Extensions have been proposed,
such as case statements, subroutines with multiple entries and
exits, and restricted "goto.") Other aspects of structured
programming are block structures with nesting for readability;
maintenance of local variables that are never accessed from outside
the module; and non-self-modifying code.

For the required constructs to be employed, they must be
supported by the programming language. It would be difficult for
assembly languages to support a structured programming style,
although examples do exist, but many high-level languages can and
do; e.g., Gypsy [181, Pascal [19], Modula [20], and Euclid [21].

One of Dijkstra's original objectives was that "mechanical
proofs might be easier for a program expressed in some structured
form" [15], referring to the machine-processable format that
structured programs present. Verification systems currently under
development in fact depend on these characteristics of programs, and
may restrict the programmer even more by, for example, forcing
proper type matching and eliminating pointers.

Verification

At present it is possible to verify a design (described in a
formal top level specification) by showing that it corresponds to a
security model of DoD policy (this has been done manually for a
small system, and verification facilities are under development that
will treat larger ones automatically). It is also possible for
implementations of small programs (in suitable, axiomatized
programming languages) to be verified against their design
specifications., The program is thus shown to implement the policy.
The correspondence chain implied here is shown in figure 3.

15

NIVHO JON3IANOJdSIHHOD "€ ainbiy

*32JN0S 3y} 01 32uapuodsa1i0d 10y 3POI duiydew 3yl Jo Bunipne jewiojul aq Aew 1eYym SMOYS X0 paysep ay |

~

\

£\

£
“.-|Am000 123r90) —I
i 3d092 — -

aniHovi |
rl IS Gemay lL

(3@0J 324NOS)

NOILVLN3IWI1dWI

(SNOILVYII14103dS)
NDIS3a

£ N\

(713aow)
AJIT0d

16

Design verification has taken two forms: invariant and flow
analysis. A proof of invariants shows that certain conditions hold,
ie., as state transitions are made. Invariant analysis can be used
to detect access control violations. Flow analysis detects if
illegal information flows may occur with the design, i.e., if flow
control violations may occur. Both invariant analysis and flow
analysis are discussed by Millen [22].

Implementation verification demonstrates that a program is
consistent with its design. For instance, assertions on the states
of variables at specific points in the program are shown to hold for
all possible inputs. The logic involved in implementation
correspondence proofs is very direct. The problems arise in the
enormous amount of processing required for even simple proofs.
Also, not all programming conditions can be checked. A notable
example is concurrency--dealing with multiprocessing and ‘
simultaneous events. A number of trustworthy operating systems are
currently being planned and built to be processed by verification
facilities.

Testing

Testing methods in general attempt to show that the expected
events occur when expected inputs are presented. Exhaustive testing
seeks to show that all possible events are handled, i.e., expected.
The philosophy has often been that the user will not try to misuse
the system by attempting unexpected operations. Penetration
analyses test for flaws in the system that could be used to
circumvent the protection controls. Penetrations were performed
successfully in the early 1970s to demonstrate the seriousness of
the computer security problem [10] and will continue to be used in
the future. Test procedures are detailed by Yourdon [15].

SUPPORTING FACTORS

Factors which support the protection mechanisms by making them
more amenable to users include human interface (how difficult it is
to use the facilities), granularity of protected objects (defining
the smallest or largest unit the system will protect), system sizing
(amount of storage, number of terminals, etc., available to users),
and computational speed (response time). These tend to be factors
of functionality rather than of protection, but they nevertheless
add a significant dimension to the evaluation criteria. It is
expected that systems which fall within each level will be judged
suitable for a given application based on such supporting factors.

17

SECTION 3

LEVELS OF PROTECTION

The evaluation factors have been configured into seven levels,
each of which identifies an increased degree of internal protection.
The detailed descriptions include the technical, observable features

of operating systems upon which an evaluation could be based. To
summarize briefly:

® At level 0, there is no basis for confidence in the system's
ability to protect information.

® At level 1, recognition of some attempt to control access is
given, but only limited confidence in the viability of the
controls is indicated.

® At level 2, minimal requirements on the protection policy
must be satisfied; assurance is derived primarily from
attention to protection during system design and extensive
testing.

® At level 3, additional confidence is gained through
methodical construction of the protection-related software
components of the operating system (i.e., the TCB
implementation), and modern programming techniques.

® At level 4, formal methods are employed to verify the design
of the TCB implementation.

® At level 5, formal methods are employed to verify the
software implementation of the design.

® At level 6, object code is analyzed and the hardware support
is strengthened.

The levels of protection are ordered such that a system ranked
at one level also qualifies for a lower level. For example, a level
3 system would be at least as strong as a level 2 system. Even
though a system may exhibit elements from several different levels,
it will be evaluated at the highest level for which it satisfies all
the requirements.

18

In a number of instances a level might be attained in more than
one way. For example, a design verification need not follow a specific
methodology deemed appropriate; a comparable methodology will be equally
as effective.

19

LEVEL 0t NO PROTECTION

A level O designation implies null capability, and would
initially be applied to all unevaluated systems. In many instances
of older operating systems, there are no, or only incomplete,
provisions for protecting information from unauthorized access.
Even the most general form of access control, limited access to the
operating system via user-id and password, may not be required by
the system. Where it is assumed that the environment in which the
system runs is "benign," the lack of even minimal precautions is
understandable. For example, even though a diverse collection of
users might operate on the system (such as on a computer used for
research projects at a university), users would not be expected to
have malicious intent. As a consequence, the system is at most
designed to protect against gross carelessness (e.g., in writing a
file tagged read-only), not against a determined subverter (who
might change the tag, then write).

In summary, there is no assurance that the system can restrict
users to some subset of the total information and services
available., A level O categorization indicates there is no evidence
that the system will adequately protect information,

20

LEVEL 1: LIMITED CONTROLLED SHARING

The level 1 evaluation is a recognition of the presence of
credible data access controls capable of providing minimal
protection. Designers have seriously begun to address the problems
of controlled information sharing in some more recently developed
time-sharing operating systems.

Protection Policy

A protection policy of enforcing access control to data objects
is expected at this level. Protection policies will likely follow
the discretionary model--individuals are allowed to reference the
information objects only in certain ways, which may be determined by
labels or tags associated with both subjects and objects. The
policy may also include algorithms for determining when a user can
change the authorizations to a given object.

Specific Protection Mechanisms

The specific mechanisms which enforce the protection policy
provide operating system protection (isolation) and user virtual
spaces. Mechanisms to enforce a data policy on access control are
provided. System access is gained through specific login subsystems
that require a user attribute (e.g., finger print) or information
only an authorized user should have (e.g., password).

No special protection-related detection requirements are made
on systems at this level; however, as a performance or economic
measure, accounting subsystems may measure the activity on the
system.

No special fault-tolerant hardware is assumed. However,
software diagnostics should attempt to detect errors that could hurt
the system either by making it temporarily unavailable
(inaccessible) for repair, or by destroying information stored on
primary and secondary storage media. Backup and restore utilities
and procedures exist for recovering file systems in the event of a
fault.

Assurance

No particular standards for the operating system development
are required at this level, although it is expected that what has

21

been loosely referred to as "best commercial practice," or "good
engineering practice," is followed. Confidence in the system is
measured by code inspections and by the results of "industry-

standard testing" (general debugging and tests of functionality).

Residual Risk

A level 1 system is only assumed to allow reasonable access
control. Consequently, the flow control required by DoD policy may
be non-existent. The operating system cannot be assumed to protect
information on the basis of labeling; hence, either this cannot be a
prerequisite or the application must provide the labeling capability
from the protection that is provided by the operating system. Even
this must be done with care since the operating system is capable of
negating controls in the applications.

Summary

Although protection is not of major importance to the design,
the system does have some limited means of controlling access.
Testing is the only means by which the protection mechanisms are
validated. The essential elements of level 1 systems are listed in
figure 4, It is likely that many commercially available operating
systems released within the last few years would be categorized at
this level.

22

8urys9] TeuoTloung
3ut88nqga(q
Sur3s9] uor3onpoig

ONILSHLe

NOILVDIATdHAe

suot3loodsur

NOILVINIWATdWI®

s90T110BIg
Sutaoourluyg poon

NDISH(e

Sutaeyg POTTOIIU0) POITWIT :T ToA9T

 2an31g

A3an009y/dnyoryg

HONVNIINIVIH/SNOILVYEdO e

soT3souder(
uoT3o939Qq ITNEBI 92IBMIJOS

HIVMTEVH — AYIA0DHE e

NOILOALHA e

(ut8o1) aosn/walsLg
UoTIBOTIUDYINY

JUSWUOITAUD
Ten3ata sseoooad-a3g
woS4s
3utieaado pojefosI
£31a893u7 wWO3sASg

1013U0) SS9IOY
uoT1d93l0ad ®le(

NOIINIATEd e

uor3o930ad Liojepuem
10 AIBUOTIDIDISTIP
JO WIOJ 2WOg

HONVINSSV

WSINVHOUK

ADIT0d

23

LEVEL 2: EXTENSIVE MANDATORY SECURITY

The concern at level 2 is that the protection policy
accommodate extensive mandatory security. Within the computer
system, this means that

1. Authorizations to read data can be administratively
controlled;

2. Flow controls prevent the data from being compromised; and

3. The integrity of the data can be maintained through write
access controls.

The national security community has applications in which
mandatory security is essential if more than one clearance level of
user, or more than one level of data classification, may be present
on the system at one time. Due to operational necessity, this can
often be the case. At this level, in addition to satisfying the
requirements of levels 0 and 1, the operating system acts in
accordance with DoD policy.

Protection Policy

The system should support mandatory security control over and
above any discretionary authorization policies.

Specific Protection Mechanisms

The specific protection mechanisms which foster an operating
system of this level contribute to the enforcement of the protection
policy and to the prevention of certain classes of denial of service
attacks. Typically, in order to enforce the mandatory policy stored
on computer systems, users, their processes, and information objects
are labeled appropriately by the operating system. These labels
must be protected across operating system actions.

Denial of service is addressed by implementing some form of
"time-slice" scheduling policy, preventing any one user or program
from effectively locking out all others from the CPU., Denial of
service by the operating system is also accomplished if any
user/process action can cause the system to "crash;" the possibility
of such actions occurring should be minimized. The masquerading
problem is addressed by mechanisms allowing the user to authenticate
the system (e.g., by killing all currently active processes and
initiating a new login).

24

Protection should be extended to consideration for information
after it leaves the confines of the computer system: printouts,
punched cards, and other forms of output must be labeled
appropriately.

Specific protection-oriented actions will be audited, or
recorded, in order that suspicious and incriminating actions might
be detected--even if not prevented. Specifically, violations,
output production, time of access, and time of login/logout should
be recorded.

Fault detection in hardware should focus on protection-related
hardware mechanisms (e.g., by using the software subverter
approach).

Assurance

Confidence in the system is spurred by the techniques used to
develop the system, namely modern programming practices. Structured
programming techniques promote the writing of understandable code--
code which is consequently more easily debugged. However, extensive
testing is relied on for assurance. Penetration testing--testing in
which attempts are made to exploit errors in the system and subvert
the policy--is extensive.

Residual Risk

Although extensively tested, a level 2 system is still subject
to design and coding errors. Testing should detect any obvious
flaws; yet subtle ones might linger, to the advantage of untrusted
users who are in a position to exploit them.

Summary

Level 2 systems support a mandatory security policy. Some
attention is given to preventing denial of service by the operating
system, and there is an attempt to audit, or record, certain
protection-related events. Extensive testing, including penetration
analyses, are relied on for assurance. A few systems modified for
high-integrity DoD applications are expected to fall in this
category. The essential elements of level 2 systems are listed in
figure 5.

25

Suruspie/SUOTIBRIIDUD]

£31TaInoag LI01BPUB SATSUIIXY 7 [0A9]

¢ 2an31g

SurTaqeT 3nding

IONVNAINIVH/SNOILVYHEdO ®

sueifoad I9319AQNg
uoT309319(Qq IIned dIBMIJOS

HIVMTEIVH — AYHAODHY o

sur8oT]
9sSn-Jo-awWI]
uotrjonpoig ndinp paIJISSEI)
(In3yssooons
/peidwelje) SuUOTIBIOIA
ur8807 ITPNY

DONILSHIe NOILOFLHAQ @
NOILVDOIAIYHAe
wa3lskg/a9s)
UoTIBDIIUSYINY 90TAIIS JO TBTIUS(
sonbtuyoeyz
Surtuwea3oag UISPOR Surpeaanbsey £3TIndoag KAaojepuep
SUIDTTS-2wT]
NOILVINIWH TdHTe 90TAISg JO TBTUS(Q £1BUOTISIOSIQ
NOISH(e NOILNIATY] e
WSINVHOHRW AD1IT0d

JONVINS SV

26

LEVEL 3: STRUCTURED PROTECTION MECHANISM

It is at level 3 that the focus on high integrity protection
mechanisms intensifies. At level 2, confidence that the mechanisms
implement the protection policy is derived from careful adherence to
methodological approaches to developing the protection-related
functions of the operating system.

The hardware and software that perform these functions comprise
a trusted computing base (TCB). The TCB has direct responsibility
for the protection of the system. Not only is the TCB to be more
carefully designed and implemented with respect to protection, it is
not dependent on other software, and can protect itself from
tampering. (The functionality required here has been documented by
the author [9].)

Mechanisms that attempt to provide the protection needed for

safe information sharing are built directly into the system, rather
than added onto it.

Protection Policy

There is no change in policy from level 2,

Specific Protection Mechanisms

The specific protection mechanisms that contribute to a level 3
system all relate to clearly identifying and isolating the TCB of
the system that will have the responsibility for enforcing the
protection policies. Key to this ideal are mechanisms that permit
complete mediation of all accesses to information objects, and
isolation of the TCB itself for protection. The hardware, for
example, may provide for segmented memory and specific protection on
each segment. The TCB need only control the setting of protection
modes, and the hardware will automatically check for invalid
accesses. This kind of protection could, of course, also apply to
the TCB code and data, providing the necessary isolation.

Assurance

By appropriately structuring the software that implements the
protection features of a system, one can achieve more easily
designed, coded, debugged, and maintained software. The
methodologies that aid software development employ top-down design,
abstract types, and structured programming in a high-level language.

27

Visibility into the design is gained by top-level
specifications, providing a high-level description of the external
interface to the TCB. Such a description of the external behavior
of the TCB aids the testing process by delineating specific test
cases. The kinds of testing required for level 2 acceptance will
still be necessary here.

Residual Risk

Level 3 systems, by their construction, may invite greater
confidence than level 2 systems. However, the testing process is
still the main source of assurance; consequently, level 3 systems
carry the same type of residual risk as is found in level 2 systems.

Summary

Protection is extremely important to the design of level 3
systems., Protection mechanisms are identified, isolated, and made
independent of other software, allowing for ease of informal
verification and analysis. Assurances go beyond testing because
there is a methodological and structured approach to the design of
the software involved in protection. But testing is still the
primary means of assurance. The testing process is, however, aided
by high-level descriptions of the user interface (e.g., top level
specifications). The essential elements of level 3 systems are
listed in figure 6.

28

WSTUBYISR UOTIDVI0IJ PoInlonalig :¢ ToAd]

S71I, uo peseq
ONILSHILe

NOIIVDIATYddAe®

SutumeaSoad psanjoniag

NOTLVINIWAIdHIe

98en8ueT
LUoTIBOTITOdS,,
1o ,udisep,,
B UT poqIIosep
udtsep 19a9T dog
u8tsop umop-dog,
£30Topoyisl painjoniig

NOISHC®

9 92and1g

HONVNIINIVH/SNOILVIEdO e

HIVMAEVH — ZYIAODHY @

NOILDHLIHde

uoTlRIpoU °319Tdwmo)

usTueyosw uoriosjoiad palzeTosT

£311893u7 wWalsdg

NOILNIAHYEd o

9DTAIDS JO TBTUSQ
A311andoag Axojepuel

ALIBUOTI2108I(

HONVANS SV

WSINVHIOIN

A0170d

29

LEVEL 4: DESIGN CORRESPONDENCE

The main distinction to be made for systems at this level is
that formal methods are employed to confirm trustworthiness from the
design. At this level, mathematical proofs of correspondence of the
design to a security policy, represented by a security model, are
required.

Protection Policy

There is no change in protection policy requirements from
level 3.

Specific Protection Mechanisms

A specific requirement of the system is that it be able to
audit the use of storage channels. These channels might be detected
as a result of the formal verification techniques or by penetration
analysis; however, they may not be easily removed without affecting
the system in an adverse way. By imposing restrictions on the way
resources are being shared, the system may no longer be allowed to
use an optimal algorithm for resource utilization. The use of such
channels can be detected with auditing mechanisms, and the ‘
information obtained from the auditing mechanisms can be analyzed
later to find the source and seriousness of the channels'
exploitation.

Hardware failures become increasingly more critical at level 4
as more confidence can be gained from the software implementation.
At this level, it is required that the system be able to crash
"softly"--restart (at some checkpoint location) with data in a
consistent state--in the face of hardware errors, with support for
recovery.

Assurance

Whereas the mechanisms used to enforce the protection policy
may be addressed even in level 3 systems, additional assurance is
sought at level 4, The additional assurance is that which comes
from the completeness advantages of mathematically supported design
verification. At level 3, insight into the overall design should be
provided by top-level specifications of the external interfaces. At
level 4, the specifications are required to be in a form that proves
the design corresponds to an accepted security model. Both
invariant and flow analyses are required.

30

However, a "correct design" does not imply a correct
implementation. The source and machine code must be verified to
correspond to the design as described in the specification (either
through compiler verification or by some other means) for complete
assurance. This form of verification will only be required at
higher levels.

Even with formal design verification, functional testing is
still needed. In addition to that required at previous levels, test
cases are also required and are obtained from the specifications.

Configuration management becomes especially important at this
level because the verified specification is expected to correspond
to the implemented design. Changes should be controlled and
audited. Also, because of the likelihood that requirements on the
system may change, reverification procedures must be established.
These might well be an extension of normal configuration management
procedures.

Residual Risk

By undergoing rigorous design verification, level 4 systems are
less likely to suffer from subtle design errors that may result in
information flow through covert leakage channels. However, that the
design is correctly implemented is not guaranteed.

Summary

Assurances extend to proofs of design-to-model correspondence
through formal verification, showing that the design obeys an
approved model of DoD policy. All identified leakage channels are
audited. A number of systems under development for DoD are expected
to fall into this category. The essential elements of level Y
systems are listed in figure 7.

31

SIL woig
UOTIBIDUSY) 9SEBN) 1SI]

IONILSHL

sjueTIRAUT
sTsATeUE MOTJ]
jooad Tepouw-o3-ul8isag

NOILVOIATHEIA

NOILVINIWITINI

(S1L) suor3edoIzTOAdS
T2a97 doa ‘Tewaog

NOISHd

@ouspuodsaaio) udTssq 4 ToA9T

[2an81g

UOTIBOTITIDADY
juswaSeuey uorizeANSTIUONH

AONVNEINIV/SNOIIVIdd0e

suotjeiodo polTWI]
20uBISTOL 3ITNRI M/H

HIVM@TIVH - AYHAQDHTYde

sTauuey) o3eyeo]
3ur3d3o7 3TPNY

NOIILDHALIde

NOILNHATYd @

9DTAIBG JO TEBTUS(Q
£31andoag Liojepuepy

A3IBUOTISIOSIQ

HONVINSSV

WSINVHIIW

ADIT0d

32

LEVEL 5: IMPLEMENTATION CORRESPONDENCE

In level 5 systems, the implemented system must be shown to
formally correspond to the verified top-~level design. Also at this
level, more stringent requirements for denial of service provisions,
hardware fault tolerance, and leakage channel control are demanded.

Protection Policy

Additional policy matters to be considered involve the denial
of service aspects--those involving the right of authorized users to
an equitable share of all the resources of the system, not just the
use of the CPU. No formal model of denial of service protection for
the consideration of formal verification exists. Validation of
conformance to policy in that respect must come about through
extensive testing.

Specific Protection Mechanisms

The prevention of extensive exploitation of the covert leakage
channels must be provided at this level. In particular, storage and
timing channels, identified through design verification and testing,
must be narrowed to limits that conform to the perceived threat.

The exploitation of any known channels should be monitored through
the use of on-line, real-time, surveillance tools.

Space resources (e.g., based on priority) are equitably
allocated at this level.

Hardware-supplied backup systems and redundant circuits aid the
fault-tolerance required of the hardware at this level. The
unpredictability of hardware failures and the potential results
necessitate the support that can be gained in addition to software.

Assurance

The importance of this level rests soundly on the proof of
implementation, shown either by direct correspondence to a security
model (in which case the design embodied in the implementation would
be shown to correspond), or by correspondence to a design previously
shown to correspond to the security model.

Proofs of correspondence, while possible to produce manually,
may be automated, at least for fairly simple programs. However,
proof of a code-to-design correspondence, even for simple programs,

33

requires the specification of the system in more detail than a top-
level specification might show. The provision of lower level
specifications may be necessary as intermediate steps to the proof
process. In addition, the source programs must be written in a
language suitable for verification, and, at present, assertions must
be added.

Penetration analyses are focused on identifying information
leakage channels (such as timing channels) that might not be
addressed by verification.

As yet, no control of the compilation phases has been required,
although visual inspection of generated source and assembly code
should satisfy one that no "trap doors" or "Trojan horses" have been
implanted to circumvent the verified protection controls.

Residual Risk

Level 5 systems have the advantage of extensive program
verification. At this stage, software ceases to be a weakness of
the system. Hardware becomes more of a threat, even with extensive
fault tolerance capability.

Summary

At this level, the state-of-the-art (and somewhat beyond) in
computer security is brought to bear on the development of the
protection-related software. Verification extends not only to
proofs of correspondence of design to model but also to proofs that
the implementation faithfully carries out the design. At this
level, stringent requirements are made on the hardware (through
backup systems) to decrease the probability of security breach due
to hardware failure. All identified leakage channels are narrowed
to tolerable limits. The essential elements of level 5 systems are
listed in figure 7.

34

2ouspuodsaiio) uoriejuswsTdul

sTouueyd JuTWL]
s9sATeUR UOT3}BIIBUD]

ST1 woay
UOTIBIDUIY 9SB) 3ISI]

ONILSHL

syooad u3tsop-03-3pOD

NOILVOIATYIA

SUOTIADSSY
98en3ueT padLl A18uoalg
uoriejuswaTdwy STGRIITISA

NOILVINIWETdWI

(ST1) suorled1iToads [9A9T MmO

NOISHd

1G ToA9]

g 92an814g

HONVNIINIVW/SNOILIVEAdOe]

smolsfs dnyoeg
K1epo009yg 3Tneg M/H

TIVMAEIVH — XYEA0DTYe

ST001 90UBRIIIQAINS SWII-TBIY

NOILOHIHe
pelTWIl
~-y3pIMpueq sTauueyd °3€I01S
PePITUTT
-y3pIimpueq syouueyd 3UTWT]
UOTSNTTO)

sejon) Idoedg
90TAI3g JO TeTUS(

NOILNIATYde

90TAIDS JO TeBTUS(

HONVIENSSY

WSINVHDIRN

AJ110d

35

LEVEL 6: OBJECT CODE ANALYSIS

At this, the final currently defined stage, the last measure of
reassurance is provided in the form of an analysis of compiler
output, ie., object code. A proof of correspondence of object code
to security model is indicated, (and thus satisfies the verification
requirements for levels 4 and 5). However, a check of generated
machine code against source code verified to correspond to a proven
design would suffice.

Hardware requirements tighten here, too, as the probability of
failure shifts from software to hardware. Although the impact of
hardware fault should be softened as the result of provisions made
at lower protection levels, formal approaches to understanding the
behavior of hardware must be attempted here. '

Protection Policy

No change to the operative protection policy is necessary at
this level. Assurances that the system behaves in conformance with
the protection policy is now extended to the object code and
hardware.

Specific Protection Mechanisms

At this stage, the emphasis is on hardware mechanisms, for the
, Software has undergone extensive verification. Fault handling must
move from fault detection and fault tolerance to fault recovery.

Assurance

Assurance gained at this level comes from the careful analysis
of the generated object code. That this code fulfills the
requirements of the security model is one aspect that must be
ascertained.

In addition, the bare machine must be more carefully verified
if it is to support the programs that are also so thoroughly
verified. This kind of understanding comes from interface
specifications of the hardware, as is done for the TCB, from which
formal statements can be made about the behavior of the security-
relevant hardware under certain circumstances (e.g., changes in
physical environment). Test case generation should follow from the
hardware interface specifications.

36

Residual Risk

Level 6 systems offer a degree of confidence which is only
imaginable from today's technology. Any threats at this level would
be a result of highly improbable hardware errors, or, more likely, a
failure in the personnel, administrative, physical, or
communications security provisions.

Summary

At level 6, formal analysis of the object code produced by the
compiler is required. Axiomatization of the underlying hardware
base, and formal verification of the security-relevant hardware
mechanisms, are also required. It is recognized, however, that
these requirements are beyond the anticipated state-of-the-art of
verification in the 1980s. The essential elements of level 6
systems are listed in figure 8.

37

SMH woXjq
UOTIBID2UDY 9SB) 1IS9T

ONILSEL ®

S711 31sutede pozijeu®R SMH
Jooad apood
2021n0s-03-9pod 399[qQ

NOILVOIJATIYHA ®

NOILVINAWATIAWI e

(SMH)
SUOT1BITITO9ds 21BMpIRY

NDISHA o

STsATeUy 3po) 109lqQ :9 19497
6 2an81g

u0T3091100/sTsoudeTIp-JIo8
A390009Y 3ITNRJ]

HONVNHINIVIH/SNOILVYddOe

HIVMTEVH —~ AYHAODIYe

NOILOHELdIde

NOTINHAHEd @

9DTAIDG JO TEBTUI(

HONVINSSY

WSINVHDEKW

ADTIT0d

38

SECTION 4

CONCLUSION

The sheer volume or criticality of applications that run on
computer systems now, and of those that will run in the coming
decade, necessitate careful attention to protection-related issues
in the design of operating systems. Systems that purport to handle
such information transactions will be more in demand; consequently,
a means of determining their acceptability will be required. This
report documents criteria for the evaluation of operating systems in
which a TCB methodically designed, implemented, tested, and verified
ranks highly. The reason for this is, of course, the recognition
that ad hoc techniques of system development, no matter how cleverly
implemented, cannot offer the assurance of methodical confirmation
of the implementation.

The criteria, as stated, attempt to cover all known threats
and the approaches to combating them. To allow the criteria to
accommodate innovation, and to remain flexible in the face of
change, certain precautions have been taken in the establishment of
these criteria. Care has been taken to avoid specifying the mode or
vehicle of implementation (e.g., hardware or software). Instead,
attention has been focused on functionality--what must be accomplished
to combat an abridgement of the relevant protection policy. Due to
the ordering of protection levels, as the requirements are made more
stringent, responses to newly perceived threats may be added as
additional levels.

39

10.

11.

REFERENCES

Lee, T, M. P., P. Neumann, G. J. Popek, P. S. Tasker, S. T.
Walker, C. Weissman, "Processors, Operating Systems and Near-
by Peripherals: A Consensus Report," in "Secure Operating
System Technology Papers for the Seminar on the DoD Computer
Security Initiative Program," NBS Special Publication, Gaith-
ersburg, Md, 17-18 July 1979.

Denning, D. E. and P. J. Denning, "Data Security," ACM Comput-
ing Surveys, Volume 11, Number 2, September 1979, pp. 227-249.

DeMillo, R. A., D. P, Dobkin, A. K. Jones, and R. J. Lipton,
(ed.), Foundations of Secure Computation, Academic Press,

1978.

Biba, K. J., "Integrity Considerations for Secure Computer
Systems," ESD-TR-76-372, The MITRE Corporation, Bedford,
Mass., June 1975.

Bell, D. E. and L. J. LaPadula, "Secure Computer Systems,"
ESD-TR-73-278, Volume I-III, The MITRE Corporation, Bedford,
Mass., November 1973~June 1974.

Department of Defense Directive 5200.28, "Security Require-
ments for Automatic Data Processing (ADP) Systems," December
18, 1972 (including Change 2, 29 April 1979).

Department of Defense Manual 5200.28-M, "ADP Security Manual,"
January 1973 (including Change 1, June 25, 1979).

Department of Defense Regulation 5200.1-R, "Information Secu-
rity, Program Regulation," December 1978.

Nibaldi, G. H., "Specification of a Trusted Computing Base,"
M79-228, The MITRE Corporation, Bedford, Mass.

"Computer Security Developments Summary," MCI-75-1, Electronic
Systems Division (AFSC), L. G. Hanscom Field, Bedford, Mass.,
December 1974,

Tangney, J. D., "Minicomputer Architectures for Effective

Security Kernel Implementation," ESD-TR-78-170, The MITRE Cor-
poration, Bedford, Mass., October 1978.

41

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES (Concluded)
Lampson, Butler, "A Note on the Confinement Problem," CACM,
16: 10, October 1973, pp. 613-615.

Avizienis, A., "Fault-Tolerant Systems," IEEE Transactions on
Computers, Volume C-25, Number 12, December 1976,

Di jkstra, E. W., "The Structure of THE-Multiprogramming Sys-—
tem," Communications of the ACM, May 1968, pp. 341-346.

Yourdon, E., Techniques of Program Structure and Design, (En-
glewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975).

Jones, C. "A Survey of Programming Design and Specification
Techniques," IBM, Santa Teresa Laboratory, San Jose, Ca.
95150.

Neumann, P. G., "Computer System Security Evaluation," Proc.
NCC, January 1978.

Good, Donald I., R. M. Cohen, C. G. Hook, L. W. Hunter, D. F,.
Hare, "Report on the Language Gypsy: Version 2.0," ICSCA-
CMP-10, University of Texas at Austin, Department of Computer
Science, September 1978.

Hoare, C. A. R,, and N. Wirth, "An Axiomatic Definition of the
Programming Language PASCAL," Acta Informatica, Volume 2, pp.
335-355, 1973.

Wirth, N., "Modula: A Language for Modular Multiprogramming,"
Software Practice and Experience, Vol. 7, 1977, pp. 3-35.

Lampson, B. W, et al., "Report on the Programming Language
Euclid," SIGPLAN Notices, Volume 12, Number 2, February 1977.

Millen, J. K., "Operating System Security Verification," M79-
223, The MITRE Corporation, Bedford, Mass., September 1979.

42

