
TRUSTED UNIX WORKING GROUP

(TRUSIX) RATIONALE FOR SELECTING
ACCESS CONTROL LIST FEATURES FOR
THE UNIX SYSTEM
NCSC-TG·020-A

Library No. 5-232,508

FOREWORD

The National Computer Security Center (NCSC) formed the Trusted UNIX
Working Group (TRUSIX) in 1987 to provide technical guidance to vendors and
evaluators involved in the development of Trusted Computer System Evaluation
Criteria (TCSEC) class B3 trusted UNIX* systems. The NCSC specifically
targeted the UNIX operating system for this guidance because of its growing
popularity among the government and vendor communities. By addressing the
class B3 issues, the NCSC believes that this information will also help vendors
understand how evaluation interpretations will be made at the levels of trust
below this class. TRUSIX is making no attempt to address the entire spectrum of
technical problems associated with the development of division B systems;
rather, the intent is to provide examples of implementations of those security
features discernible at the user interface that will be acceptable at this level of
trust.

TRUSIX is not intended to be a standards body. nor does it intend to produce a
de facto standard to compete against POSIX. Additionally, the TRUSIX
documents are not to be construed as supplementary requirements to the
TCSEC. The TCSEC is the only metric against which the trustworthiness of an
operating system will be evaluated.

This document, "Rationale for Selecting Access Control List (ACL) Features for
the UNIX System," is the first in a series of companion documents being
produced by TRUSIX. The guidelines described in this document provide
alternative methods for implementing ACLs in the UNIX system.

UNIX is a registered trademark of AT&T

Recommendations for revision to this guideline are encouraged and will be
reviewed periodically by the NCSC. Address all proposals for revision through
appropriate channels to:

National Computer Security Center
9800 Savage Road
Fort George G. Meade. MD 20755-6000

Attention: Chief, Technical Guidelines Division

18 August 1989

Patrick R. GALLAGHER JR
Director
National Computer Security Center

ACKNOWLEDGMENTS

Special recognition is extended to those members of the TRUSIX Working Group
who participated in the Access Control List Subcommittee. Members of this
subcommittee were: Craig Rubin. AT&T Bell Laboratories (Co-Chair); Holly
Traxler, National Computer Security Center (NCSC)/Institute for Defense
Analyses (IDA) (Co-Chair); Bruce Calkins. NCSC; and Casey Schaufler9 Sun
Microsystems. Recognition is also extended to the following members of TRUSIX
who provided input through discussion and comments: Bernie Badger, Harris
Corporation; Caralyn Crescenzi, NCSC; Cynthia Irvine, Gemini Computers;
Howard Israel, AT&T Bell Laboratories; Frank Knowles. MITRE; James
Menendez. NCSC; Dr. Eric Roskos, IDA; Rick Siebenaler. NCSC, Lucy Stasiak,
AT&T Bell Laboratories; Albert Tao, Gemini Computers; Dr. Charles Testa,
Infosystems Technology, Incorporated (IT!), Mario Tinto, NCSC; Grant Wagner.
NCSC; Larry Wehr, AT&T Bell Laboratories; and Bruce D. Wilner. IT!.

Acknowledgment is also extended to the members of the POSIX P1003.6
Security Subcommittee and to those members of the computer security
community who contributed their time and expertise by actively participating in
the review of this document.

EXECUTIVE SUMMARY

The Trusted UNIX Working Group (TRUSIX) has examined the issues
surrounding implementation of access control lists (ACLs) in the UNIX System
and has identified a set of recommendations for implementors of ACL features.
These recommendations balance issues of compatibility with existing
applications, ease of use and acceptability to the end user9 and architectural
simplicity with the requirements for systems evaluated according to the Trusted
Computer System Evaluation Criteria (TCSEC). The recommendations reflect the
collected opinions and analyses of the participating vendors, evaluators, and
researchers regarding implementation of ACL features.

The recommendations of TRUSIX with regard to ACLs are as follows:

· ACLs are required for files9 IPC objects, and UNIX system domain sockets.
Access control for sockets that use name spaces other than those local to the
UNIX system (UDP, TCP) must be addressed in the specification and
evaluation of the system involved, and are neither explicitly recommended nor
exempted.
· Access modes specifiable via ACLs should include read, write, and execute;
other modes should be allowed to be added as desired, but no additional
modes should be required to be supported.
· Each ACL entry should specify permissions for either a user or a group, but
not both.
· Permissions granted by an ACL entry are masked by the group class file
permission bits.
· Multiple concurrent groups should be supported. In addition, some method of
group subsetting should be provided. It is recommended that this subsetting
allow the user to become a member of only one group at login time, then to
dynamically add groups to or delete groups from the working group set as
required.
· A system-defined ordering of ACL evaluation that evaluates from most
specific to least specific is recommended. Where multiple concur~nt groups
are in use, and more than one matching group is found in the ACL,
permissions granted by all matching groups should be ORed together.
· Modifications to mechanisms that change ownership, change the file
permission bits, or access object attributes are not recommended.

Existing mechanisms for object access, inquiry, and deletion should not be
changed, and new parameters should not be added. Instead, new mechanisms
should be created that make use of existing ones.- The interface for mechanisms
that create objects should not be changed, except for the possible creation of a
default ACL.

· For the new mechanisms that are added to support ACL operations, get/set
operations should be used. These operations should be implemented via a
single system call with command arguments to specify the various operations.
For commands at the user interface, the names getacl and setacl are
recommended.
· Named ACLs need not be supported.
· Provision of default ACLs for file system objects is recommended, along with
a user-specifiable mechanism for indicating whether or not they should be
used.
· Provision of default ACLs for [PC objects is not recommended.
· Default ACLs should be provided on a per-directory basis. Newly-created
subdirectories should inherit the default ACL of the parent directory.
· When a new object is created and ACL entries are attached via a default
ACL. the file group-class permission bits are not affected unless an explicit

mechanism is provided.

The preceding list summarizes the recommendations of the Trusted UNIX
Working Group. The main body of this document discusses the rationale for
these recommendations and gives further details of the recommendations
themselves. The appendix, the TRUSIX ACL Worked Example, gives an
example of how these recommendations might be implemented.

introduction

The intent of this document is to explore the issues involved in extending the
UNIX System discretionary access control (DAC) mechanism. DAC is a means of
controlling access to an object based on the identity of subjects and/or groups to
which they belong. The controls are discretionary in the sense that they are
chosen by the object owner.

The DAC mechanism employed in the current UNIX System was designed for
efficiency, flexibility. and ease of use. This mechanism allows and encourages
the sharing of information, but at a very coarse granularity, via the use of file
permission bits. File permission bits are associated with three classes: owner
(sometimes referred to as "user"), group. and other. Access for each class is
represented by a three-bit field allowing for read, write, and execute-permissions.

Several methods exist for allowing discretionary access control on objects. These
methods include capabilities, profiles. access control lists (ACLs), protection bits,
and password DAC mechanisms. The intent was to select a DAC mechanism
with finer granularity than the current file permission bits, while maximizing the
compatibility with both the current mechanism and POSIX P1003.1. Review of
the

methods described in A Guide to Understanding Discretionary Access Control in
Trusted Systems(2], and of the desired outcome, point to the use of ACLs. It
should be noted that ACLs can be considered a straightforward extension of the
existing

UNIX is a registered trademark of AT&T

UNIX system protection bits, since the protection bits may be interpreted to be a
limited form of an ACL, which always contains three entries. It has been
suggested that the fine granularity of coritrol provided by ACLs may be simulated
in UNIX systems by using the group mechanism. Groups are lists of users which
may be used to specify who may access a file. In the worst case9 all possible
combinations of users would have to be represented in order to fully implement
these lists. This corresponds to (2'·"M-1) groups, where M is the number of bits in
the group-ID. Since the number of possible combinations of users needed to
implement this scheme for N users is (2"N-1), the maximum number of users

which could effectively utilize such a system would be limited to the number of
bits in the group-ID. This number (often 16 or 32) is an unreasonably small
number for most UNIX systems and the management of the groups by users
would be difficult. Also, this scheme does not allow for individual users in the lists
to have different access rights. All users in the group would be forced to have the
access rights given by the file group class permission bits. Some differences in
access rights could be simulated by using the file other class permission bits, but
not with the same functionality as provided by conventional ACLs.

The DAC features explored in this rationale are based on the DAC features
requested by customers, the class B3 DAC requirements described in the DoD
Trusted Computer Systems Evaluation Criteria [1] (TCSEC), and the DAC
mechanisms used in existing trusted systems (e.g., Multics). Based on these
inputs9 it has been determined that the current DAC mechanism in the UNIX
System is adequate for most needs and that the only enhancement required is to
allow reasonable, finer-grained control of objects. This provides the capability to
share or deny access to individually specified users and/or groups and meets the
class B3 requirements of the TCSEC.

The issues explored in this document will deal primarily with ACLs. Much of the
terminology has been adopted from the P1003.1 document and the TCSEC;
however, new terms will be defined when used. For most of the issues identified,
alternative solutions are given along with a recommendation. Although an
attempt was made to consider the' issues independently, it should be noted that
sole of the issues are actually very dependent on each other and
recommendations `made in some areas greatly influenced later
recommendations.

Goals

The primary goal in extending discretionary access control in the UNIX system is
to provide a finer graninlarity of control in specifying user and/or group access to
objects. This can be achieved through the addition of access control lists. The
following is a list of additional goals for the extended DAC mechanism:

· The mechanism should provide compatibility with the existing (currently
P1003.1) and emerging POSIX standards and with the current UNIX System
DAC mechanism. In the unlikely event of a conflict between the current UNIX
System DAC mechanism and POSIX, the POSIX interpretation will be used. In
addition. the semantics of existing interfaces should be maintained.
· The following requirements for DAC in the TCSEC at class B3 should be
fulfilled. "The TCB shall define and control access between named users and
named objects (e.g., files and programs) in the ADP system. The enforcement
mechanism (e .g., access control lists) shall allow users to specify and control
sharing of those objects, and shall provide controls to limit propagation of
access rights. The discretionary access control mechanism shall either by

explicit user action or by default, provide that objects are protected from
unauthorized access. These access controls shall be capable of specifying, for
each named object, a list of named individuals and a list of groups of named
individuals with their respective modes of access to that object. Furthermore.
for each such named object, it shall be possible to specify a list of named
individuals and a list of groups of named individuals for which no access to the
object is to be given. Access permissions to an object by users not already
possessing access permission shall only be assigned by authorized users."
· Reasonable vendor extensions to the DAC mechanism should not be
precluded.
For example, the specification of read, write and execute permissions should
be supported. Other permissions should not be required nor should they be
precluded as extensions.
· A minimum set of new interfaces and error codes should be provided. The
new command interfaces provided for the user must be easy to use and the
existing interfaces should continue to work as expected.
· Intermixing use of the existing and newly-defined DAC functions/commands
should provide reasonable results. Security should be maximized by opting for
more restrictive rather than less restrictive decisions ~h~ff·' a choice must be
made.
· When changing DAC on an object, at no time shall access be more
permissive than either the initial or resulting access.

ACLs On Objects

A system can support several different types of objects, e.g., system objects,
public objects, named objects. System objects are entities internal to the TCB
(e.g., system data structures) not directly accessible by the normal user and, as
such, do not require discretionary access control. Public objects are objects
readable but unmodifiable to the normal user (e.g., system clock)9 and thus also
do not require discretionary access control. Named objects are objects readable
and modifiable at the user interface (e.g., text files). The TCSEC class B3
requirement for DAC states that access control must be enforced on all named
objects in the system [1]. Although there may be some variance among different
UNIX system implementations, there are two common classes of named objects
that require ACLs. These classes are files (including regular. directory. special.
and named pipes), and named IPC objects (including shared memory, message
queues, semaphores, and sockets).

It is these classes of objects that will be protected by the discretionary access
control alternatives described later in the paper. It should be pointed out,
however, that discretionary access can not always be completely determined
solely by the file permission bits and the ACL associated with the object. It is
possible to have objects which have been administratively configured for a
specific access and thus not completely affected by user DAC, e.g., a file system
mounted read-only. There are other instances where discretionary access of

objects may be time-dependent and thus not completely based on a current DAC
setting. Examples of this would be the inability to write a shared-text file while it is
being executed or trying to execute a file while it is open for writing. These
situations are acknowledged special cases and will not be considered in the
general discussion of determining effective discretionary access.

ACLs On IPC Objects

IPC objects are named objects and are thus require ACLs at class B3. Note that
this does not include unnamed pipes which can only be used to connect related
processes. Although the semantics of IPC mechanisms are slightly different from
those of file system objects, a DAC scheme similar to that used for file sky5~~~
objects should easily be adaptable to IPC objects. For example, message
queues utilize both a creator and an owner of an IPC object and maintain creator
and owner UIDs and G[Ds (cuid,uid, cgid,gid). User access is checked against
the cuid and the uid, and group access is checked against the cgid and gid. This
situation can easily be represented with ACLs by using additional ACL entries to
represent the creator U[D and GID. Additionally, some access modes associated
with file system objects, such as execute, may not be applicable to IPC objects.
This does not cause a problem as long as the modes are a subset of those
defined for file system objects.

ACLs On Sockets

Sockets are named objects and would thus require ACLs at class 83. UNIX
system domain sockets use the file system name space for access control
decisions and currently have file permission bits associated with them. Thus,
domain sockets would also need to have ACLs associated with them. Other
types of sockets which use other name spaces (UDP. TCP) are currently not
protected with any type of access control. Since it is not clear whether these
types of sockets could currently be included in an evaluated configuration, they
will not be addressed at this time.

Additional Access Modes

Existing UNIX systems support three access modes: read, ivrite, and
execute/search. Additional access modes are conceivable, and may be
convenient to add while adding ACLs. Various possibilities include:

· read attributes of object
· write attributes of object
· append only to object
· truncate data of object
· delete object
· lock object
· restrict setuid execution of object

· restrict access of object based on time.

Note that this is not an' all-inclusive list.

In this and subsequent sections, alternative implementations of a given topic are
examined, followed by the TRUSIX recommendation.

Require Additional Access Modes

In this approach to handling additional access modes, new access modes would
be defined and required. This limits the availability of compliant implementations
and impacts compatibility.

Prohibit Additional Access Modes

In this approach, new access modes would explicitly not be allowed. Due to loss
of flexibility, compliance with this scheme would limit implementation.

43 Allow Additional Access Modes (With Control)

In this approach, new access modes would not be defined. Instead. the concept
of and mechanism for adding new access modes would be defined. This allows a
vendor to produce whatever additional access modes are desired. Since the
mechanism for doing so is defined there is little chance of collisions or
contradictions. The mechanisms must be defined and agreed upon by some
regulating body which allocates access bits. Note no such body currently exists
which has been tasked to allocate access bits.

Allow Additional Access Modes (Without Control)

In this approach, additional access modes are neither defined nor precluded.
This method allows a vendor to produce whatever additional access modes are
desired, but there is no mechanism provided for adding new modes. There would
be no control on the access modes vendors might add.

Recommendation

We recommend allowing additional access modes, without control. There should
be nothing precluding the addition of new access modes if desired. However,
since there is nothing currently in the POSIX P1003.1 standard concerning
additional access modes, no new access modes or mechanisms need be
defined.

ACL Entry Type And Format

The manner in which an ACL entry refers to a user or group of users is an
important factor in the usability of an ACL mechanism. The alternatives are to
have an ACL entry contain either a user or group in an entry. or to have an ACL
entry contain both a user and group. The issue is which of the alternatives is
more suitable to a system utilizing ACLs.

5.1 User And Group Entries

A user and group entry contains a reference to both a specific user and a specific
group together as a [UID,GID] pair. The UID -specific and GID-specific entries
can be represented as special "wildcard" cases (denoted by *) meaning any user
or group will match that entry. Using this method, an ACL entry may refer to one
user in a particular group [UID,GID], one user in any group [UID,*], any user in a
particular group [*,GID], or any user in any group [*,*] which is equivalent to the
file other class permission bits. A typical ACL utilizing entries of this type might
look like the following:

user1.projA rw-

user2.projB r-

user3.* rwx

*.projA r-

. ---

Implementations of protected subsystems is the only clear example that suggests
using user and group ACL entries as a pair. Using the UNIX system setgid-on-
exec feature, it is possible to build protected subsystems. Consider the following
example which makes use of this feature.

A database of tapes is maintained in /etc/tapedata. The database administrator
(DBA) of the database wishes to produce a utility to control access to this
database. To begin with, there are some rules for dealing with the database.
Some users should have read and write access, others just read access, and still
others should have no access to the database. Readers should only see data
about their own tapes. In addition, since other database utilities have poor error
handling, all updates to the database need to be made in the correct format.

The DBA has written a utility named tapedb which can read and update the
database. /etc/tapedata and tapedb both have the group tape associated with
them, and tapedb has the set-group-id bit on. The DBA has also created an ACL
for letc/tapedata which contains the following entries:

userl.tape r-

user2.tape r-

user3.tape rv-

user4.tape rv-

.

All users named in the ACL (in group tape) may read the database Only user3
and user4 (in group tape) may update the database. If the only way for a user to
be a member of group tape is by executing tapedb, then the DBA is satisfied that
letc/tapedata is adequately protected.

While this example suggests a useful application of user and group ACL entries,
there are other ways to implement the example which do not require this ACL
entry type functionality. As described in the following section, the same effect can
be achieved through ACLs containing user or group entries.`

Additionally, identification by a user and group pair is not used in a UNIX System.
In some systems, a user is identified by a userID,group~ID pair. In Multics, for
example, a user is identified by a user-ID, project-ID pair. where a project-ID is
equivalent to a group-ID on the UNIX system. Userl in projA. on a Multics
system, is distinct from userl in projB. Since Multics users do not have the
capability to change groups9 the only way for a user to be identified with another
project would be to log in with another group-ID. In UNIX systems, however. a
user is really only identified by the user-ID. Also, a user can easily change group-
ID through the neivgrp command or be associated with several groups at the
same time if using a system with multiple groups. Thus, controlling access for a
user while in a specific group is not as useful in a UNIX system.

User Or Group Entries

A user or group entry contains a reference to either a specific user or a specific
group, but only one at a time. Consider the following example, where u indicates
the user class, g indicates the group class, and o indicates the other class:

u:userl rw-

u:user2 r-

u:user3 rw-

u:user4 rw-

g:projA r-

g:projs rw-

o: rw-

To address the protected subsystem implementation, consider again the tape
database example described in the previous section. Rather than controlling
access to the data, access can be controlled on two subprograms; one which
reads data, the other which updates data. The ACL on the database,
/etc/tapedata would be:

g:tapereaders r-

g:tapewriters rw-

o:

The user interface for access to the database is tapedb. The program tapedb is
not setgid, however, it invokes two other programs, tapedbread and tapedb\vrite,
that are setgid. Only users allowed to read the database have execute
permission on topedbread, while only those allowed to update the database may
execute tapedb_write. The ACL on tapedbread would be:

u:userl --x

u:user2 --x

u:user3 --x

u:user4 --x

o:

The ACL on tapedb_write would be:

u:user3 --x

u:user4 --x

o:

The program tapedb_read runs setgid to the group tapereaders, and the program
taped_vrite runs setgid to the group tapewriters.

Thus, the same protected subsystem can be provided through ACLs of type user
or group.

The main advantage of this scheme is that it provides more clarity for the user.
This is considered to be a very important advantage as a user's understanding of
such a mechanism is essential in promoting its correct usage. Additionally, this
scheme removes the need for wildcard specifiers, thus eliminating the potential
problems of picking an unused character as a specifier.

Recommendation

User or group entries in ACLs are recommended. Since there is no clear need for
the user-group paired entry scheme and there are several advantages to the
user or group scheme, the user or group scheme is the preferred alternative.
Examples were examined which claimed to require the use of user-group paired
entries. One such example deals with protected subsystems as described above.
Protected subsystems, a useful and important feature in a trusted system, can be
implemented through other means not requiring user-group paired entries. We
have "found that this is a limited class of applications and may be implemented
with the user or group scheme with minimal effort. For UNIX systems with
multiple groups, the user and group scheme becomes more difficult when
determining access. Additionally, the user or group scheme follows the idea in
UNIX systems that a user is only identified by user-ID and gives no special
meaning to what a user can do while only in a certain group. Finally, although
simplicity is a very subjective measure, in comparing the two alternatives the
advantage of simplicity outweighs the ability to specify both a user and a group in
a single entry.

Relationship Of ACL And File Permission Bits

ACLs expand upon the discretionary access control facility which is already
provided by the file permission bits. Although file permission bits do not meet the
TCSEC class B3 requirement for DAC, they are sufficient for many uses and are
the only mechanism available to existing applications. Existing applications that
are security-conscious use file permission bits to control access. The relationship
between the ACL and the file permission bits is important to existing programs in
order to maintain compatibility. For example, use of chmod("object" 0) should
continue to work, denying subsequent opens to an object. The following sections
discuss possible approaches to handling the interaction of ACLs with file
permission bits. Any references to default ACLs will be fully described in the
Default ACLs section.

ACL Always Replaces File Permission Bits (Pure ACL)

In this approach, the file permission bits are no longer consulted for DAC
decisions.

Instead, each object always has an ACL and the ACL completely determines
access. Consider the following example illustrating this scheme. Assume Userl
and User2 are members of the group "GroupA" and User3 and User4 are not.

file Owner/Group User2/GroupA

file permission bits: rwxr-x-x

ACL Entries:

User1 rwx

User2 r-

User3 rwx

User4 ---

In this example the file permission bits would have no effect on the access
control decision. User3 is able to read, write and execute the file. User2 is able to
read it, but not to execute or write to the file. The file permission bits are
completely ignored.

The resulting pure ACL system does not have to worry about interactions
between the ACL and the file permission bits, since the latter are not used for
access control decisions. A single, well defined access policy is employed.
Applications which should make use of DAC are forced to understand the new
rules. The major disadvantage of this scheme, however, is that compatibility is
lost. Every DAC cognizant progr&m, and that should be every program that
manipulates the discretionary access control information on an object needs to
be changed to understand ACLs.

Owner Selects ACL Or File Permission Bits

In this approach, either the file permission bits or the ACL are consulted for the
access control decision on a per object basis. The owner determines whether the
file permission bits or the ACL is used. The system call chmod returns an
indicative error if the object has an ACL, but otherwise sets the file permission
bits. Consider the two following examples which illustrate this approach. Once
again assume Userl and User2 are members of the group "GroupA" and User3
and User4 are not.

Example A (ACL selected):

file Owner/Group User2/GroupA

file Permission bits: rwxr-x-x

ACL Entries:

Userl rwx

User2 r-

User3 rvx

User4

Since there is an ACL on this file the access control is the same as in the
previous example.

Example B (file permission bits selected):

file Owner/Group User2/GroupA

file permission bits: rwxr-x-X

ACL Entries: NONE

Since there are no ACL entries on this file the access control ~r determined by
the permission bits. User2 (owner) has all access permissions to the file. Userl (a
user in GroupA) is allowed read and execute access. User3 and User4 ("other"
users) can only execute the file.

The resulting system behaves like a file permission bit based system if no one
ever sets ACLs and like the pure ACL system if a default ACL mechanism is in
use. Thus, either environment can be supported. The compatibility issues raised
in the previous section apply here as well. In addition, the programs have to
determine which access control mechanism applies to each object created and
set the DAC accordingly.

Independent ACL And File Permission Bits (AND)

In this approach, both the file permission bits and the ACL are consulted for the
discretionary access control decision on a per object basis. Access is granted if
and only if it is granted by both the ACL and the file permission bits. Consider the
following example9 which illustrates this approach. For this example9 assume
only User2 is in GroupA.

file Owner/Group User2/GroupA

file permission bits: rwxr-x-x

ACL Entries:

Userl rwx

User2 r-

User3 Tx

User4

In the example above, the file permission bits imply that Userl has execute
permission, whereas the permissions specified in the ACL imply that Userl has
full access. Without knowing which group User 1 is in, one cannot predict
whether or not Userl can read the file. If Userl is in group GroupA, then Userl will
have read and execute permissions. If Userl is not in group GroupA, then only
execute permission will be granted. Similarly, without knowing User3"s group,
one cannot predict whether or not User3 has read access. User4 will have no
possibility of access, due to no permissions specified in the ACL entry. As the
example illustrates, there is no way to get a full ACL view with this scheme.

With this scheme, some compatibility is maintained. Calls to chmod have the
desired effect from the restrictive point of view. ACL entries can further restrict
access. Making use of the ACL as the effective access control mechanism
requires that the file permission bits be set wide-open (i.e., read, write, and
execute bits are set for user, group and other). In situations where ACLs are not
properly set, a new object will become generally accessible. Likewise, if the ACL
is removed then the object will again be generally accessible. This scheme also
allows for misleading status information given to programs which only use the
existing mechanism.

Independent ACL And File Permission Bits (OR)

In this approach, both the file permission bits and the ACL are consulted for the
discretionary access control decision on a per object basis. Access is granted if it
is granted by either the ACL or the file permission bits. The ACL is used to grant
access beyond what is set in the file permission bits.

Consider the following example illustrating this approach. Assume only User2 is
in GroupA.

file Owner/Group vser2/GroupA

file permission bits: rwxr-x-X

ACL EntrieS:

insert rwx

inser2 r-

inser3 rwx

User4

Userl, User2, and User3 have read, write, and execute access. User4 has
execute access.

Again, some compatibility is maintained. Calls to chmod have the desired effect
from the permissive point of view. The previous alternative's problem of leaving
the permission bits wide-open is thus avoided.

The problem with this scheme, however, is that a chmod call which would deny
all access (chmod("object", 0)) in a system without ACLs will not do so here.

File Permission Bits Contained Within ACL

In this approach, only the ACL is consulted for discretionary access control
decisions. The file permission bits are replaced by three "base" entries in the
ACL. Calls to chmod modify the owner, group, and other entries contained in the
ACL.

Calls to stat read this information from the ACL.

In the following two examples assume the owner entry is evaluatefl before
additional user entries, and the group entry is evaluated before additional gr1oup
entries.

Example A:

file Owner/Group inser2/GroupA

file permission bits: rwxr-x-x

ACL Entries:

owner rwx

User1 rvx

User2 r-

User3 r-x

User4

group r-x

other --x

In this example. it is not clear what permissions User2 is to be granted, since a
particular method for determining owner access has not been specified for the
case where an additional user entry also names the owner. User2 could be
granted read, write, and execute access as the owner. read access only, as per
the explicit entry for User2, or some combination of the two (e.g., the AND or OR
of the two). Userl, User3, and User4 get their access from their ACL entries.

Example B: (After a chmod("object", 0))

file Owner/Group inser2/GroupA
file permission bits:

ACL Entries:

owner

User1 rwx

User2 r-

User3 r-x

User4
group -
other

Changing the file permission bits to zero does not change the permissions
granted to Userl, User3, and User4, since their access is based on ACL entries.
User2's access may change depending on how owner access is determined
when additional user entries naming the owner also exist.

If no additional entries are added to the ACLs, this system looks like a system
without ACLs. The literal meaning of the file permission bits is preserved in the
ACL.

· As in the previous alternative, however, a chmod call which would deny all
access (cbmod("object", 0)) in a system without ACLs will not do so here.

ACL Masked By File Permission/ Bits

In this approach, both the file permission bits and the ACL are used for
determining the discretionary access control decision. The access indicated in
the ACL entry is logically ANDed (masked) with one or more of the file
permission bit classes (file owner, file group, or file other class) to determine the
effective DAC permission.

Example:

file Owner/Group User2/GroupA

file permission bits: rwxr-x-x

ACL Entries:

User1 rwx

User2 r-

User3 rx

User4 ---

Assume that the group file permission bits are chosen as the mask, i.e., all ACL
entries will be ANDed against the file group class permission bits. User2, being
the owner, gets read, write, and execute access to the file. User3 is allowed read
and execute access. Userl is allowed read and execute access, the write access
is disallowed by the file permission bits. User4 is not allowed any access to the
file. Calls to chmod have the desired effect from the restrictive point of view but
not necessarily from the permissive point of view. Since the bits of the masked
field will most likely be set wide-open, the literal meaning of the field chosen for
the mask appears to be lost. The POSIX standard, however, allows for the
extended meaning of the group class permission. bits.

Recommendation

We recommend the AcL Masked By File Permission Bits approach. This is the
most reasonable approach when trying to balance security and compatibility. The
question of designating the masking field must still be resolved. The file group
class permission bits are the preferred masking field, even though they
encourage permissive default access by the owning group. This choice must be
made because the use of the file owner class would cause compatibility
problems in programs which attempt to establish "owner-only" access, whereas
the designation of the file other class could leave objects open to attack were an
ACL removed or never present. An additional option of masking user entries with
the file owner class permission bits and group entries with the file group class
permission bits has the same disadvantages as masking against only the file

owner class. When masking against the file group class, the permissions indicate
the least upper bound of the permissions allowed for the ACL entries and the
user and other fields retain their previous semantics.

To summarize the approaches identified in this section:

The ACL Masked By File Permission Bits approach is a compromise for both
security and compatibility.

The Independent ACL And File Permission Bits (AND) approach suffers from the
serious flaw that the file permission bits must be set very permissively in order to
allow the ACL entries to predominate in the discretionary access calculation. A
simple mistake in setting the ACL could grant object access to significantly more
users than was intended.

The Independent ACL And File Permission Bits (OR) approach may require that
both ACL and the file permission bits be changed in order to deny a particular
access. Thus, existing programs could believe that they had prevented access
when they, in fact, had not. Similarly, in the File Permission Bits Contained Within
ACL approach, removing "other" permission might not have the desired effect9
since, the owner, group, and other entries may not be the only ones in the ACL.
In neither case does a call to chmod with a zero argument unequivocally revoke
access from all users as might be expected.

Whichever DAC scheme is ultimately selected, an appropriate balance must be
struck between the mutually conflicting concerns of compatibility and security. In
a DAC scheme where chmod cooperates with ACLs, chmod must not grant
inappropriate access or require unreasonable (i.e., permissive public access)
defaults.

Barring compatibility, the alternatives of ACLs replacing file permission bits (Pure
ACLs and On Demand) would be the most elegant way of enhancing DAC for
UNIX systems. By abandoning file permission bits, however, these schemes
have been rendered incompatible with existing systems. Thus, they are not
considered for a POSIX-compliant UNIX system DAC scheme.

Group Semantics

There are various ways of using the UNIX system group mechanism when
grouping system users. In designing ACLs it is important to understand the
possible semantics and provide enough flexibility to properly support these
semantics. Initially, there are no restrictions on how users can be grouped.
Various possibilities include:

· a shorthand way of referring to groups of subjects
· a method of grouping project work by group access rights

· privileged roles
· accountability (file ownership)

The issue arises. however, of how to deal with user membership when
considering these possible grouping mechanisms. For example, should a user be
permitted to be a member of more than one group at any given time? If so.
should there be a mechanism provided to allow the user to control group
membership? These issues will be addressed in the following sections.

Single Group Membership

Under a single membership scheme, a user can only be a member of one
specific group at any given time. All discretionary access checks will be made
with respect to the user's OlD and a single GID. A user will only be able to
change his/her group through the use of the newgrp command. This scheme is
easy to implement and introduces no additional complexity with respect to
evaluating access within an ACL. Additionally. it would certainly be acceptable in
a class B3 system.

Multiple Concurrent Group Membership

Under a multiple concurrent group scheme, a user can be a member of more
than one group at the same time. This scheme introduces some complexity when
evaluating user access by allowing more than one ACL entry of equal specificity
to apply to a user simultaneously. For example, if a user is a member of several
groups at the same time and tries to access an object with an ACL containing
entries which match the user on more than one group, what will the resulting
access be? There are several ways of determining the resulting access in such a
case. These are discussed under ACL Evaluation.

Another concern with the use of multiple concurrent groups is the possibility of
violating the least privilege principle. With multiple concurrent groups if a user is
in several groups at once, he/she is granted access to all of those groups at all
times rather than to just the ones he/she needs at any given time. This could be
contrary to the idea of a user having a minimal set of privileges necessary to
perform a particular function at any given time.

It can be argued, however, that the least privilege requirement in the TCSEC only
applies to TCB architecture, making this issue irrelevant for DAC. On the other
hand there may be a problem with a system which implements privileged roles
through the group mechanism. The TCSEC class B3 Trusted Facility
Management requirement states that separate roles must be assigned to
operator and adinistrator functions and that each role be restricted to performing
only those functions necessary for that role. Given a system, therefore, which
uses the group mechanism to assign roles and grant access basedon role
identity to parts of the system which would otherwise be inaccessible, it is clear

that least privilege could be violated through the use of multiple concurrent
groups. The violation would occur if the user who was a member of the group
assigned to a privi leged role could also be a member of one or more additional
groups. Proper administration of these privileged groups, however. could still
allow for the use of multiple groups. but a subsetting capability, as described in
the next subsection9 would then be required.

Improperly controlled multiple concurrent groups with groups representing
privileged roles could therefore be a violation of the least privilege principle. This
would result in a failure to meet the class B3 requirements. This is only one
specific implementation, however, and it is certainly conceivable that multiple
concurrent groups could be implemented in such a way as to not be a violation of
least privilege. The multiple concurrent group scheme is currently a feature in
some UNIX systems and is thought to be an extremely useful and necessary
feature to those who use it.

Multiple concurrent groups would also be compatible with the POSIX standard

Multiple Concurrent Groups With Subsetting

Another problem associated with multiple concurrent g roups arises from the fact
that currently when a user logs on to a system he/she automatically becomes a
member of all of the groups that he/she is allowed membership in. There is no
way for the user to only be active in a subset of his/her possible group set.
Although there is no explicit requirement in the TCSEC precluding this, the
TCSEC does seem to imply that a user should by default have a minimal amount
of access rights atlogin.

There are several ways of approaching this problem; any of these methods
would be a possible and acceptable means of resolving this problem. First, it is
necessary to consider whether a user should be able to add or delete groups
from his/her group set and if so, with what restrictions. A user should certainly not
be allowed to add groups for which he/she is not authorized. Therefore each user
should have an "allowable group set" which consists of all groups that user has
been given authorization to be a member of. Adding groups other than those
which appear in this allowable group set would be unacceptable.

There are at least two ways to allow a user to work with a subset of his/her
allowable group set. The first would be to keep the current scheme where a user
becomes a member of all of his/her groups at login, but provide the user with a
means (through some system call or command) to drop specific groups if desired
and work as a member of some subset of his/her allowable group set. A
command would allow a user the capability but require an explicit action to do so.
A system call, on the other hand, would provide the means for restriction through
a program which could be set up to run automatically for the user. This would
mean, however, that the set of groups would either be hardcoded into the

program or be set through some type of configuration file. Another possible
approach would be to provide a mechanism that would cause a program's groups
to be restricted when that program is executed. Although this eliminates the user
having to remember to restrict his/her groups or having to hardcode a group set
into a program, it would add further complexity to the system.

Recommendation

We recommend that the multiple concurrent group capability be provided along
with some method of subsetting. The preferred method would be to only allow
the user to become a member of one group at login and provide him/her with a
means of dynamically adding/deleting to his/her working group set. This
recommendation, of course, may conflict with implementations which use the
group mechanism for privilege roles.

ACL Evaluation

This issue deals with how an ACL is evaluated to determine access rights of a
subject to a particular object. There are several possible ordering methods for
ACL evaluation, as well as several different ways to evaluate multiple group
entries. Two levels of ordering must actually be considered when deriving an
ACL evaluation scheme; the ordering of the classes (user, group, other), and
then the ordering of the entries within each class.

Ordering Of Classes

It would certainly be possible to specify an ordering of any combination of the the
three classes, user, group, and other. However, since both the POSIX standard
and all current UNIX systems specify a "user, then group, then other" ordering,
(or most-to-least specific), when evaluating access with permissiori bits, this
ordering should be maintained for ACLs as well.

The method of evaluating an ACL in a most-to-least specific manner can be
described as follows. The owner identity of the object is first checked against the
effective identity of the subject. If there is a match the search stops. Next, a
check is made against the owning group identity of the object and the effective
group of the subject. If there is a match and the subject does not have multiple
groups, the search stops. Otherwise the rest of the group entries are searched
next. If the subject has multiple groups, the group entries are evaluated as
presented in the Multiple Group Evaluation section, otherwise they are searched
in order as the user entries are. Finally, if no user or group entries were found to
match the effective identity of the subject, access is determined based on the
other entry.

For the following discussion on the ordering of ACL entries9 it will be assumed
that the classes will be ordered and follow this most-to-least specific regime.

User-Defined Ordering

In this method, entries are considered according to the ordering given by the
user. The first entry as specified by the user is considered first, the second entry
next, and soon.

As long as the "user, then group, then other" order is followed, the only security
relevant problem with this method occurs when evaluating group entries with
multiple groups. If a user is a member of multiple groups and matches more than
one of the group entries, the resulting access may be dependent upon the
ordering of the group entries. See the Multiple Group Evaluation section for
various possibilities.

Unless all matching group entries are considered when determining access, the
burden is placed on the user to correctly order the group entries. This method
may appear to be more convenient for users, however, it may require the user to
have extensive knowledge of group membership. Additionally, it does not allow
for very efficient access evaluation as discussed in the following section.

System-Defined Ordering

In this method, entries are considered according to a system-defined ordering.
Although the user does not have the flexibility of choosing an arbitrary order of
entries, a system-defined ordering gives consistency to ACLs throughout the
system and may also allow for quicker access determination.

The system may use any of a variety of ordering methods, two of which are
alphabetical ordering by user or group name and numeric ordering by user or
group ID. An ordering of lowest to highest UID or GID, or vice-versa, is
recommended as it provides an efficient way to check for redundant entries.
Redundant entries should not be allowed in an ACL.

It is important to mention that actual sorting need not be done by the kernel itself
as long as the kernel enforces the specified ordering. In other words, the sorting
can be achieved through the use of library routines. The ACL commands would
automatically use the library sorting routines and users would also be
encouraged to do so when writing their own programs which manipulate ACLs.
When an ACL is passed to the kernel, the kernel verifies that the entries are
sorted or else a failure will occur. In this manner, efficiency is achieved while still
enforcing a system-defined ordering.

This alternative is simple. reduces the possibility of user error, and allows for
more efficient access determination.

Multiple Group Evaluation

When a subject is a member of multiple groups, there are several ways the group
entries may be evaluated, regardless of the ordering of the entries. The following
methods may be used to evaluate access when multiple groups are used:

The first entry which matches one of the subject's groups might be used to
determine access. While this is an efficient method, it does not take notice of the
possibility of other groups granting access.

The entry which matches one of the subject's groups and grants the least access
might be used. This method does not recognize the possibility that all the groups
together might grant or deny the desired access.

The entry which matches one of the subject's groups and grants the most access
might be used. This method also does not recognize the possibility that all the
groups together might grant or deny access.

ANDing the permissions of all the entries which match groups of the subject is
another possible method. This approach may be considered too restrictive, since
even one entry which grants access may be overruled by other entries which
deny access.

ORing the permissions of all the entries which match groups of the subject is also
a possibility. This method may be considered too permissive, since the maximum
permissions allowed by all the matching entries taken together is the result.

However, the same effect can be achieved currently, through the user simply
invoking the newgrp command to change to the group with the d1esired access
or by opening the same file twice from two different groups which together
provide the desired access.

Recommendation

A system-defined ordering which evaluates ACLs entries from most-to-least
specific is recommended. Since multiple groups were designed to be permissive
and permissive results can be achieved through other means anyway, the
method which ORs the permissions of all matching group entries is
recommended for systems implementing multiple groups.

Concern has been expressed that this scheme violates the wording in the
TCSEC, for DAC at class B3. The TCSEC states: Furthermore, for each such
named object, it shall be possible to specify a list of named individuals and a list
of groups of named individuals for tvhich no access to the object is to be given.
The ORing of groups, however, does not present a conflict with the class B3
DAC requirement, as it still allows the user to specify groups that shall have no
access.

DAC Compatibility

Designing an ACL mechanism requires that attention be given to the use of
system calls which check or modify the existing DAC mechanisms, and to the
additional use of ACL mechanisms in system calls. The classes of DAC
mechanisms which return or change the value of the discretionary access control
information are those mechanisms which: change ownership of an object9
change the file permission bits. create objects, access object attributes. and
access object data. Each of these classes will now be examined and a
determination will be made of what changes, if any9 are required for inclusion in
a system with ACLs. For each class, we provide alternative solutions and identify
the preferred choice.

Changing Ownership Of An Object

Mechanisms which change ownership of an object (e.g., chown, msgctl, semctl,
shmctl) could create a new user or group entry for the object owner or group,
with the same access permissions as the original entry for the object owner or
group. The original entry would become an additional user or group entry. The
problem with this alternative is that by leaving the original entry for the object
owner or group behind as an additional user or group entry, the mechanism will
always create an ACL for an object which did not have one to begin with.

The preferred alternative is for these calls to suffer no additional side effects due
to the presence of ACLs. This can be achieved by not storing explicit IDs in the
owner and owning group ACL entries. An advantage of this altern'ative is that the
ACL entries for object owner and object owning group can be readily
distinguished syntactically from the other user and group entries.

Changing The File Permission Bits

Mechanisms which change the file permission bits (e.g., chmod, msgctl, semctl,
shmctl) might be changed so that they fail, or partially fail, when presented with
an object that has an ACL.

Complete failure is a poor alternative since these mechanisms change the file
mode, not just the file permission bits. For example, a program should be able to
do a legitimate operation such as changing the setgid bit on any file. Partial
failure means that these mechanisms would make the requested changes but
return an error value different from -1. This is a poor alternative for two reasons:
it does not make good sense to succeed while returning failure. and programs
often do not differentiate between error return values.

Other alternatives attempt to minimize surprises to the caller by changing ACL
entries. The first of these alternatives is to mask the access permissions in all the
object's additional entries. Access permissions for entries with specific user and

specific group are ANDed with the supplied user and group access permissions.
Access permissions for entries with only a specific user are ANDed with supplied
permissions for the user, and permissions for entries with only a specific group
are ANDed with supplied permissions for the group. While this meets POSIX
requirements, programs that wish to change only the file mode (non-access) bits
will have the masking occur as an undesirable side effect. Another alternative is
to disable the additional entries. This implicitly requires a new mechanism to
enable entries that have been disabled. POSIX requirements are also satisfied
by this alternative, but the same problems exist as in the previous alternative;
programs using these mechanisms to change the non-access file mode bits will
have entries disabled as an undesirable side effect. Still another alternative is to
delete the additional entries. This has similar advantages and disadvantages as
ACL entry disabling. It is simpler since there is no need for an ACL entry enabling
mechanism. Information given by the user, however, is deleted without warning.

The preferred method is to make no changes to these mechanisms. The
mechanisms will affect only file permission bits and ACL entries for the object
owner or group. While this does not provide non-ACL cognizant programs with
expected results for operations on objects with ACLs, it is not perceived as a
serious problem. This alternative is consistent with the preferred alternative for
mechanisms which access object attributes as well (see below).

Creating Objects

Mechanisms which create or truncate objects (e.g., creat, open, mkfifo, mkdir,
msgget, semget, shmget) should work as they currently do, except that they may
create an ACL as part of the default ACL mechanism. Please refer to the section
on default ACLs for more information. Note that default protection on newly-
created objects will be accomplished via the umask and/or default ACLs.

It may also be desirable to add other types of ACL features to mechanisms. For
example, one might wish to add the capability during file creation to adopt a
specific ACL. For changes of this type, parameters of existing mechanisms
should not be changed9 and new parameters should not be added. New
mechanisms should be created which make use of existing ones. For example.
creat may need to be modified to take ACLs into account, but the parameter list
should not change. Instead of adding an ACL parameter to creat. a new system
call (i.e.. with some other name) should be used. which takes the ACL as a
parameter and then uses creat.

Accessing Object Attributes

Mechanisms which access object attributes (e.g. stat, msgctl, semctl, shmctl)
could be modified to fail when applied to an object with an ACL. This is an
unacceptable alternative since these mechanisms return more information than

simply the file mode. Thus. non-functionality would require a new mechanism to
return the additional information for objects with ACLs.

Another alternative is to find all the entries in the ACL that apply to the user-ID
and group-ID of the subject, jus t like a permissive access check. Then OR all the
associated permissions together, and return the results in the appropriate file
permission bits (user, group, and other). While this alternative integrates the idea
of ACLs into mechanisms that access object attributes9 the context of the
mechanisms affects the result returned to the point where the meaning of what
the mechanisms return is somewhat clouded.

The preferred alternative is to make no changes to these mechanisms. The
mechanisms will continue to return the file permission bits as if ACLs did not
exist. Another mechanism must then be used to find out if the file has an ACL,
and if so, what its entries are. While this alternative does not provide all
information to subjects that don't know about ACLs, it does not change the
current behavior of these mechanisms.

Accessing Object Data

There are a number of system calls which will need to have AFL functionality
added to them (i.e., for access checking). These calls include all those taking file
system object names as parameters, as well as those IPC mechanisms which
perform access checks. Examples of some of these calls are: open, msgsnd,
msgrcv, semop, and shmat.

It is also important for portability that programs use the available access control
mechanisms in an appropriate manner, so that the security policy is interpreted
correctly. For instance, at the system call level, the permission information
returned by the use of stat may not be sufficient to determine allowed access;
other information such as ACL contents may have to be evaluated as well.

Recommendation

The following is a summary of the preferred alternatives stated in this section.
Regarding compatibility with existing DAC mechanisms that either 1) change
ownership or group of an object. 2) change file permission bits, or 3) access
object attributes should remain unchanged and not affect an existing ACL on the
object or create an ACL where one did not exist before.

Regarding the addition of ACL functionality, existing mechanisms should not be
changed, and new parameters should not be added. Instead, new mechanisms
should be created which make use of existing ones.

ACL System Calls And Commands

This issue addresses what the naming conventions and functionality for ACL
system calls and commands should be.

For system calls, there are at least two alternative types of designs. Each
depends on how the ACL is viewed. In one approach, the ACL is a series of
independent records which can be individually manipulated using calls similar to
open, read, write. and close. This approach has a nice parallel to the way files
are read and written, but may be viewed as overly complicated given the relative
infrequency of ACL modification. In the other approach. the ACL is considered a
single unit and is not changed record-by-record, but instead always manipulated
as a whole. This approach uses a "get" and "set" concept for ACL operations,
where an ACL, as a whole, is retrieved, modified locally, and then replaced [3].
This approach is simple and reflects the g rowing trend towards get/set type
operations.

It may also be reasonable to extend the "get" and "set" concept to apply to
default ACLs as well as to the ACL associated with an object. This is a natural
extension of the way ACLs would be manipulated, and default ACL operations
may be easily added to the recommended system call interface described
below,;

'

There are also two possible methods for implementing these calls. One option is
to use separate system calls for each of the ACL operations (i.e., getacl, setacl).
The other option is to have one ACL system call that can be invoked with a
number of command arguments indicating the desired ACL operation [3]. An
example of a useful additional command argument is one that would return the
number of entries in the ACL. This method conserves the number of system
calls, and provides the flexibility to add ACL commands via command arguments.
Additionally, using this method, designers are free to implement library functions
based on the system call with particular command flags.

For commands, the same issues apply as for system calls. In a system with
ACLs9 however, there will be a need for commands to not only manipulate ACLs.
but also to show and manipulate all discretionary access control information.
These commands should include. at a minimum:

· command(s) to retrieve and set file permission and mode bits (Is, chmod)
· command(s) to retrieve and set ACL information (new)
· command(s) to retrieve effective discretionary access to files (new)

In addition, there may be useful features to add to existing utilities (e.g., the
ability to find a file according to its ACL [12]) so that they might be able to
conform to the enhanced DAC mechanisms.

Recommendation

For the ACL system call interface, get/set ACL type operations should be used9
and should be implemented with a unified system call with command arguments
used to implement the various operations. For commands. the names getacl and
setacl are recommended since they follow from the get/set concept.

Named ACLs

A named ACL, as described in A Guide to Understanding Discretionary Access
Control in Trusted Systems [2], is an ACL that can be shared or referred to by
name. They may be implemented in one of two ways; either as a template copied
into a user's ACL or shared through a pointer from the user's ACL space (shared
ACL). A change to a shared ACL results in a change to the discretionary access
on all objects using this ACL. This result may be considered to be a side-effect or
a desired feature depending on the circumstance. Additionally, it may be difficult
to determine which objects are sharing a specific named ACL, and a user may
mistakenly grant access to an object that was not intended. Another problem with
named ACLs is that as objects they may themselves be required to contain
discretionary access controls. This suggests the idea of recursive ACLs, a
situation to be avoided.

Recommendation

Named ACLs need not be supported. but a system that does should be no less
secure or less flexible than one that does not. Absolute Siexibility of ACLs can be
achieved, however, through the use of default ACLs as discussed in the following
section. There is no strong case one way or the other for named ACLs. There are
advantages and disadvantages to both alternatives and it would really depend on
the environment as to whether named ACLs would be of any benefit.

Default ACLs

When considering ACLs, an issue arises as to whether a predesignated set of
ACL entries should be assigned to an object automatically at the time of creation.
The following alternatives present the possible ways to address this issue.

No Default ACLs

In this approach, no ACL is assigned at object creation time. The process umask
will limit the file permission bits, as it currently does, to provide some default
protection on an object.

While this alternative maintains compatibility with existing programs, it is not a
very practical solution. Depending on the relationship of the file permission bits
and the ACL, the absence of default ACLs may not make sense. For instance, in
a pure ACL implementation, the absence of default ACLs would result in no initial
protection on newly created files. Additionally, this alternative would not

encourage the use of ACLs by new programs, and would prevent ACL creation
by old programs. ACLs could not propagate through the system and hence their
usability would be lost.

Require Default ACLs

In this approach, an ACL would always be assigned at object creation time. This
would allow for initial finer grained control on an object.

Requiring default ACLs may cause incompatibilities for an old program that only
looks at the file permission bits when it creates an object. Also, for many users,
the umask may be a sufficient tool for limiting the permissions on an object when
it is created. The main advantage of requiring default ACLs is that the usability of
ACLs is greatly improved. Additionally, since an ACL is associated with an object
in a single atomic operation, the possibility of a temporarily insecure state is
avoided.

Provide Default ACLs

A mechanism is provided to put default ACLs on new objects. However9 not all
new objects need to have default ACLs. This alternative allows specification of a
default `ACL, giving a finer granularity of access control than that provided by the
file permission bits, and, at the same time allows, where desired, compatibility
with existing programs.

Recommendation

Providing default ACLs and mechanisms to specify whether or not to use them is
the best solution. This allows both classes of users, those who want default ACLs
and those who do not (even those who want no ACLs at all), the flexibility to
specify the scheme that they find most appropriate. Although in many cases the
process umask would be sufficient to assign default permissions, systems and/or
users making explicit use of ACLs will desire default ACLs. The default ACL
scheme used should be straightforward to the user and should sensibly interact
with the existing DAC mechanisms, including the ilmask mechanism. Note that
even if an object is created with no default ACL, ACL entries may still be added
to the object.

This section has really only addressed default ACLs on file system objects. IPC
objects are not part of the file system name space, and therefore require further
consideration. IPC objects are relatively short lived. and are generally not
manipulated by users at the command level as are files. Based on these
characteristics default ACLs on IPC objects are probably not needed, and their
use is not recommended.

Location Of Default ACLs

Consider the following possibilities for the origination of the default ACL.

System Wide

In this approach, one specific default ACL is assigned to any object created on
the system by any subject. This is a very inflexible solution and misses the intent
that discretionary access be set at the discretion of the user.

Per Process

In this approach, each user process defines a default ACL, similar to the umask
currently used. This is a somewhat restrictive approach since this allows the user
to set only a single set of defaults for all files created. It is likely that a user will
wish to associate different default ACLs with files created for different projects.
Additionally, the default ACL entries would have to be stored in the process area.
The amount of process space required to hold the entries would vary based on
the number of entries.

Per GID Of Created File

A default ACL could be associated with each GID. If GIDs are viewed as project
identifiers, the effect is to associate a unique default ACL within each project
subtree of the file system hierarchy. Further, in some UNIX Systems, where GIDs
propagate to newly created objects based on the GID of the creating directory
(rather than upon that of the creating subject), default protection very naturally
distributes across the file system. However this variant imposes a somewhat
restrictive viewpoint on the utility of groups.

Per Directory

This approach would allow the object's default ACL to originate from the
containing directory of the object. A directory would contain both an ACL to be
used for access checking and a default ACL to be used when a new object is
created in the directory. All objects created in the directory would be assigned the
default ACL. Newly created subdirectories would inherit the default ACL of the
parent directory. In this manner, the default will propagate down through the file
system structure resulting in much duplication of ACLs, possibly using much
space. However, the utilization of such space is a small price to pay for
enhanced security and usability, so the default should probably continue to
propagate until the user takes some explicit action to stop the propagation.

Recommendation

A user typically arranges objects per directory representing project work or areas
of interest. Since it is desirable, then, for similar objects to contain the same ACL,
the per-directory approach becomes the preferred mechanism. Newly-created

subdirectories should inherit the default ACL of the parent directory, so that
defaults are propagated down the file system, unless explicitly turned off.

Default ACL Entries At File Creation

Currently, when a file is created a user can specify its initial pe'rmissions,
however the access can be further restricted by the umask mechanism. The
uniask specifies the default protection bit settings when a file is created. Any bits
set in the umask will be cleared in the bit settings on the newly created file. It is
important, then, to consider how the default permission bit settings should
interact with the entries in a default ACL.

Consider the following options in the context of masking the ACL entries by the
file group class permission bits as recommended in the ACL Evaluation section.
Also note that these options are discussed with respect; to the ACL entry types
as described in the ACL Entry Type and Format section. Additional mechanisms
in the ACL which allow direct modification of the file group class permission bits
at file creation are not precluded.

OR File Group Class Permission Bits

Add the default entries to the file and change the file group class permission bits
to reflect the maximum permissions allowed in the ACL. This could result in more
permission than was specified in the creation call. It is not reasonable to assume
that the default permission bit settings can be ignored and completely overridden
by the ACL. For example, if a default entry exists for user "fred" with the specified
permissions of "rwx" but the file is not executable, then this permission should
not be given.

AND File Group Class Permission Bits

Add the default entries to the file but change the permissions of the ACL entries
so that they are no greater than the file group class permission bits. This is a
reasonable alternative, but it may present a compatibility problem for some
applications. An example of this problem would be when a C compiler creates a
file. The file would not originally be created with execute permission, therefore no
ACL entries on the file (which were default entries copied from the directory)
would have execute permission. The last step for the compiler would be to make
the file executable, however at this point, execute permission' which may have
been specified in the default ACL entry is lost.

No Change To File Group Class Permission Bits

Add the default entries to the file but do not change the file group class
permission bits. This may result in ACL entries which are restricted by the file
group class permission bits.

Recommendation

The No Change To File Group Class Permission Bits is recommended since it is
a reasonable alternative which does not present any problems of compatibility for
some applications.

Summary

This document has provided an analysis of key issues involved in extending the
discretionary access control in the UNIX system. For oach of the issues
identified, the paper has suggested alternative solutions, discussed the pros and
cons of each, and then provided a recommendation.

The following is a review of some of the important recommendations presented in
the paper. An access control list mechanism was chosen to extend the current
DAC mechanism. When considering the types of access provided in the UNIX
system, additional access modes need not be defined, however they should also
not be precluded. The recommended ACL entry type was that of user or group
entries. The main advantages of this solution are conformance with the UNIX
system method of identification through either the user-ID or the group-ID, and
simplicity for the user. The method in which file protection bits and ACLs interact
is a very important and complex issue given the conflicting goals of security and
compatibility. The recommendation of masking the ACL entries by the group field
of the protection bits was chosen as the most accommodating solution
considering these goals. A system defined ordering of the ACL entries was
preferred and it was recommended that the access allowed for a user in multiple
groups should be the sum of all access allowed for each group represented in
the ACL. Considering other multiple group issues9 it was recommended to
provide the multiple concurrent group capability along with some method of
subsetting. It was also recommended that default ACLs be provided and that
they originate from the parent directory of the newly created object.

It is important to note that although these and other specific recommendations
were given, it is certainly possible to design an acceptable class B3, POSIX-
compliant UNIX system following some of the other alternatives. In fact, there are
issues where the recommended solution may not be superior to another
alternative and the designer should consider his/her own specific requirements
when making a choice in those areas. It must also be pointed out that building a
system following all the recommendations presented in this paper will not
guarantee a full class B3 system. There are many additional class B3
requirements that go beyond the interface specification.

APPENDIX: Worked Example

Introduction and Overview

This worked example describes one particular Implementation following the
recommendations in the TRUSIX rationale.

Discretionary Access Contro l

Discretionary access control (DAC) provides for the controlled sharing of objects
(e.g., files, IPC objects) between subjects (e.g., processes). With discretionary
access control, the owner of an object can grant permissions to other users. The
discretionary access control mechanism uses object owner, object group, file
permission bits (nine permission bits) and the access control list (ACL) of an
object to determine the discretionary access to the object.

This document will detail the DAC interfaces and their run-time behavior.

The goals of this ACL mechanism were:

· compatibility with the current UNIX System DAC mechanism and POSIX

P1003.1

· user command interfaces that are easy to use and understand
· adhere to the "principle of least astonishment"
· interfaces should continue to work as expected
· chmod 000 file - no access to file
· chmod 700 file - only owner access to file
· chmod 444 file - denies write and execute access to file

In addition, intermixing use of the existing and new DAC commands should give
reasonable results. For instance chmod should not fail due to ACLs, and when
chmod x file is executed (x is an octal permission) Is -l displays x as the
permissions. The current output of Is -l displays the file permission bits as a
constant width set of nine characters:

rwxrwxrwx

However, an ACL, which consists of one or more user entries, one or more group
entries, one class entry, and one other entry, is not a constant length (in the
following example, indicates zero or more occurrences of the preceding entry
type):

file: filename
owner: uid
#group:gid
user::rwx
user:uid:rwx

*

group::rwx
group:gid:rwx

*

class:rwx
other:rwx

The file permission bits shown by the Is command have the following meaning:
(note the following "class" definitions are from the IEEE POSIX Std 1003.1-
1988):

1. the first 3 bits (high order) represent the file owner class and define the
permissions for the object owner,
2. the middle 3 bits (commonly called the group permission bits), represent the
file group class. This class includes the owning group of the file and will be
extended to include additional user and additional group ACL entries.
3. the last 3 bits (low order) represent the file other class and define the
permissions for other (those that did not fall into 1 or 2 above).

These nine bits indicate the maximum discretionary permissions for an object.
The actual permissions may always be less than indicated. For instance, the
permission may indicate write access on an object by a specific subject, but the
file system may be mounted read only. If an ACL mechanism is used these bits
will continue to indicate the maximum discretionary permissions for the object
and the ACL may further restrict permissions.

There is a direct mapping between the ACL and the file permission bits.
Specifically, the file owner class permission bits will always be equal to the
permissions of the ACL entry for the object owner (they may be the same bits
depending upon the implementation). Additionally, the file other class permission
bits will always be equal to the ACL other entry permissions. And the file group
class permission bits will always be equal to the ACL class entry permissions.
Typically, the file group class permission bits are set to the maximum
permissions allowed to the additional user entries, the owning group entry, and
the additional group entries.

Whenever a file is created on a file system that supports ACLs, the ACL will
contain a user entry for the object owner, a group entry for the object owning
group, a class entry for the file group class permissions, and an other entry for
the rest of the world. For compatibility with the current mechanism, if the ACL
contains no additional user or additional group entries, the permissions in the
group entry for the object owning group and the class entry must be the same.

Use of Access Control Lists

The use of DAC with ACLs will be explained by comparing it to how a user of a
non-ACL supporting UNIX System (as currently exists) would use DAC. To use
the current DAC mechanism a user usually first executes Is -l and based on the
output decides what the permissions must be changed to. in order to allow the
desired access (for example the user may want to make the file executable, or
only allow the owner to have write permission).

EXAMPLE:

$ ls -l foo

· rw-rw-rw- 1 craig demo 53 Mar 6 17:37 foo S chmod 600 foo $ ls -l foo
· rw 1 craig demo 53 Mar 617:37 foo

In the new DAC mechanism, using a pure ACL, there will be two new commands
getacl and setacl (there will be a new function, acl, for which these commands
provide a user interface). The getacl command will be used to display the ACL
and the setacl command will be used to change the ACL.

These commands will be used in much the same way that Is and chmod are
used. A user would first execyte getacl to look at the ACL and then use setacl to
make the desired changes. Because the ACL is not a fixed size, it may be
difficult to manipulate. In order to simplify the use of ACLs the following example
shows how the ACL may be easily manipulated using a text editor to give greater
flexibility (note that changes may also be specified on the setacl command line).

EXAMPLE:

#the output of getacl is redirected to the file tmp
$ getacl bar > tmp
#the file tmp is edited and the line in italics is inserted
$ vi tmp
file: bar
owner: craig
group: demo
user::rw-
group::rw-
group:guest:r-
class:rw-
other:rw-
#setacl is executed and the contents of the file tmp become the new ACL for
bar
$ setacl -f tmp bar
#the output from getacl for the file bar is displayed
$ getacl bar
file: bar
owner: craig

group: demo
user::rw-
group::rw-
group guest :r-
class:rw-
other:rw-

Structure of Access Control Lists

The ACL consists of the following types of entries, which must be in the following
order:

1. user entry - This type of entry contains a user ID and the permissions
associated with it. There must always exist one entry of th1is type, which will
represent the object owner, and will be denoted by a null (unspecified) user ID.
There may be additional user entries specified; however, no two additional
user entries will have the same user ID and there may not be any additional
entries with a null user ID. The term "additional user entries" will be used to
indicate all user entries except the entry for the object owner.
2. group entry - This type of entry contains a group ID and the permissions
associated with it. There must always exist one entry of this type, which will
represent the object owning group, and will be denoted by a null (unspecified)
group ID. There may be additional group entries specified; however. no two
additional group entries may have the same group ID and there may not be
any additional entries with a null group ID. The term "additional group entries"
will be used to indicate all group entries except the entry for the object owning
group.
3. class entry - This type of entry contains the maximum permissions granted
to the file group class. There is exactly one of these entries in an ACL.
4. other entry - This type of entry contains the permissions granted to a subject
if none of the above entries have been matched. There is exactly one of these
entries in an ACL.
5. default entry - This type of entry may only exist on a directory. These entries
are similar to the entries described above, except that they are never used in
an access check, but are used to indicate the non-default ACL entries that
should be added to a file created within the directory. Default entries are
optional9 but no two default entries may have the same type and ID.

Within each category the entries must be ordered as follows:

Entries in the user category shall be sorted numerically by user ID from lowest to
highest, except for the object owner entry9 which always precedes all other user
entries.

Entries in the group category shall be sorted numerically by group ID from lowest
to highest, except for the object owning group entry, which always precedes all
other group entries.

Entries in the default:user category shall be sorted numerically by user ID from
lowest to highest, except for the default object owner entry, which always
precedes all other default user entries. Entries in the default:group category shall
be sorted numerically by group ID from lowest to highest, except for the default
object owning group entry, which always precedes all other default group entries.
The proper ordering of entries required by the acl function can be obtained by the
use of the aclsort function. ACL entries given as input to the setacl command
need not be sorted; the sorting will be performed by the setacl command.

The permissions that may be specified in an ACL entry are read®, write(w), and
execute/search(x). When the setacl command is executed, the file owner class
permission bits will be set to the permissions specified for the owner and the file
other class permission bits will be set to the permissions specified for other. As
an option, the file group class permission bits will be manipulated such that they
reflect the maximum permission that the ACL permits to members of the file
group class (any ACL entry other than the object owner or other). Otherwise, the
file group class permission bits will be set to the permissions specified by the
class entry. Therefore, if the file group class only allows read permission then
additional user entries and any group entries in the ACL will not grant write or
execute permission.

This ACL scheme supports finer discretionary access controls than the current
mechanism, while maintaining compatibility with the current permissions
mechanism. The DAC information may be changed in one atomic operation,
avoiding the possibility of an intermediate insecure state. Finer controls can be
specified via the ACL, including explicit specification of users disallowed any
access to the object. Additionally, the file permission bits provide a summary of
all access rights.

Rationale: The ACL scheme described here will allow entries to be either
permissive or restrictive. In general, an entry that results in less permission than
the file other class permissions would grant would be considered restrictive. An
entry that results in more permission than the file other class permissions would
grant would be considered permissive. In the event that a file with an ACL is
exported to a non-ACL system, the loss of permissive entries would not present a
security problem; however, the absence of support for restrictive entries may
allow a process to have permission that it would not have been granted on a
system with ACLs. This behavior must be described in the documentation.

Discretionary Access Check Algorithm

A process may request read, write, or execute/search access permissions to a
file. Each access mode is logically checked separately using the following
algorithm. The process request is granted if all individually requested modes are
granted. Otherwise, the access request is denied.

Note, this is a logical description of the access check. The physical code
sequence may be different for better performance.

Discretionary Access Check Algorithm:

I. File Owner Class: If the effective user ID of the process matches the user ID
of the owner of the file, the process is in the file owner class. If the requested
access mode bit is set in the file owner class permission bits, this access mode
is granted. Otherwise, access is denied.

Note, the user ACL entry for the object owner matches the file owner class
permission bits.

II. File Group Class: If the process is not in she- file owner class and if the
effective user ID of the process matches the user ID of an additional user ACL
entry or the effective group ID or any of the supplementary group IDs of the
process matches the group ID of any group ACL entry9 the process is in the
file group class. If the process matched an additional user ACL entry, only that
entry is used as the matching ACL entry; otherwise, the matching group ACL
entry or entries are used. If the requested access mode bit is set in the file
group class permission bits and is set in a matching ACL entry, this access
mode is granted. Otherwise, access is denied.
Note, the permissions of the additional user or group ACL entries further
restrict the access specified by the file group class permission bits. Also, the
class ACL entry matches the file group class permission bits.
III. File Other Class: If the process is not in the file owner class or file group
class, the process is in the file other class. If the requested access mode bit is
set in the file other class permission bits, this access mode is granted.
Otherwise9 access is denied.
Note, the other ACL entry matches the file other class permission bits.

The following examples show ACL use and the results of applying current and
new DAC commands.

EXAMPLE 1:

$create file foo
$ > foo
#execute ls -l and getacl on the file foo
$ Is -l foo

· rw-r-r-- 1 craig demo 0 Mar 620:27 foo
$ getacl foo

$ file: foo
$ owner: Craig
$ group: demo
user::rw-
group::r-
class:r-
other:r-

EXAMPLE 2:

#execute getacl and Is -I on the file, run.sh, with added ACL entries

S Is -I run.sh

· rwxr-xr-x+ 1 Craig demo 73 Mar 620:27 run.sh
$ getacl run.sh
file: run.sh
owner: Craig
group: demo
user::rwx
user:fred:r-x
user:larry:--x
group::r-x
group guest:---
class:r-x
other:r-x

EXAMPLE 3:

#use the chmod command on a file with an ACL

#use getacl to report both the ACL entries and the effective permissions

$ chmod 644 run.sh
S Is -l run.sh

· rw-r-r--+ 1 craig demo 73 Mar 620:27 run.sh
$ getacl run.sh
file: run.sh
owner: craig
#group: demo
user::rw-

user:fred:r-x #effective:r-

user:larry:--x #effective:---

group::r-x #effective:r-

group guest:---
class:r- -
other:r-

File Object Creation

When a new object (regular files, special files, directories, named pipes) is
created in

the file system, there are several important attributes that must be initialized.
These are the user ID of the owner of the file, the group ID associated with the
file, the file permission bits, and the ACL.

The user ID of the file is set to the effective user ID of the invoking process. The
group ID of the file depends upon the mode of the containing directory. If the
S_ISGID bit is not set on the directory, the group ID of the file is set to the
effective group ID of the invoking process. If the S_ISGID bit is set on the
directory, the group ID of the file is set to the group ID of the containing directory.

Each function that creates a new file supplies an initial value for the file
permission bits. This initial value is then merged with the file mode creation mask
(umask) of the invoking process and with any default ACL entries of the
containing directory to form the file permission bits and ACL of the new file.

Although in many cases the process umask is sufficient to assign default
permissions, users making explicit use of ACLs may desire default ACLs. The
default ACL scheme must sensibly interact with the existing DAC mechanism,
including umask. The default ACL entries specify permissions for users and/or
groups and/or others, that will be assigned to a new file. These default ACL
entries are associated with a directory. Note, an ACL on a directory may contain
entries that control access to the directory and entries (defaults) used for new file
creation in that directory.

The process of creating the file permission bits and the ACL for the new file is
called "ACL Merge". First, any mode parameter is transformed into the equivalent
ACL form. For example, the mode 0664 is equivalent to user::rw-, group::rw-,
class:rw-, other:r--. Also, the complement of the umask is used to obtain the
equivalent ACL. Thus, the umask 022 is equivalent to user::rwx, group::r-x,
class:r-x, other:r-x.

Two ACLs are merged by first logically sorting both ACLs into one ACL. Then
any pair of matching entries are replaced with an entry that has permissions
formed by ANDing the matched entries. Thus a permission is in the merged entry
only if it was previous ly in both entries.

The first ACL merge is with the initial mode from the file creation function and
with the process file mode creation mask. The second ACL merge is with any
default entries from the containing directory. The result is the ACL for the new
file. The file permission bits are then set from the user, class, and other ACL
entries. Note, this may be different from the setacl command with the -r option
since this merge does not set the file group class permission bits to the maximum
permission of the file group class entries.

Finally, if the new object is a directory, then any default entries from the
containing directory are copied to the new ACL. That is, the default ACL entries
of the new directory are the same as the default ACL entries of the containing
directory.

An example of the ACL merge operation is shown in the following figure:

000666::rw

user::rw-

creat("file", 0666) group::rw-

class:rw-
other:rw- ACL Merge

Operation

umask 002 user::rwx

group::rwx

class:rwx

other:r-w

0664
user::rw-
group::rw-
class :rw-

other:r-

Directory user:gamma:r--

default ACL group::r-

entries group:alpha:rw-

qroup:beta:--- 0664

user::rw-

user:gamma:r-

group::r-
group:alpha:rw-
group:beta:---
class:rw-
other:r-

IPC Object Creation

When an IPC object is created (by shmget for shared memory, by semget for
semaphores, by msgget for messages), its cuid and uid will be set equal to the
effective user ID of the invoking process and its cgid and gid will be set equal to
the effective group ID of the invoking process. The initial permissions are set
equal to the specified permissions in the flag argument to the *get calls (shmflg,
semflg, and msgflg, respectively). Note that default ACLs do not apply to IPC~'
objects, although ACLs may be added explicitly to an IPC object via the acllpc
call.

Compatibility Requirements

A user will generally use the current DAC commands (Is and chmod) or the new
DAC commands (getacl and setacl). However, the use of these commands are
likely to still be inter-mixed, and they must all give correct information.

The entire interface to the current discretionary access control information must
continue to function as it currently does. For example, chmod must still be able to
modify the file permission bits and Is must still be able to report them.

Note that although Is will still report these permissions. they will not be the only
permissions evaluated during an access check. The output of Is will continue to
be the maximum permission that may be granted, but there may be additional
discretionary access control information (ACL entries) that was added to the
object. In order to indicate that additional entries exist, Is-I will display the
character "+" to the right of the current permissions display if an ACL is present.
Therefore, when additional discretionary access control information has been
added, in the form of ACL entries (as shown in the examples on previous pages),
a user will need to use the newly provided command, getacl, to get a full view of
the current discretionary access controls in effect. Although chmod will still
modify the file permission bits, it will not change any additional discretionary
access control information (i .e., ACL entries for additional users and additional

groups) added to the object. To change these additional entries if they exist, the
user will need to use the setacl command.

When the owner of an object is changed, the result will be identical to the current
behavior. If the owner is changed to a user ID for which an additional user entry
already exists in the ACL, the additional user entry is not changed but the user
entry for the object owner will take precedence during an access check. When
the group of an object is changed. the result will be identical to the current
behavior. If the group is changed to a group ID for which an additional group
entry already exists in the ACL, the additional group entry is not changed but the
group entry for the object owning group will take precedence during an access
check (except in the case of multiple concurrent groups, where all group entries
are given equal treatment).

When the ACL contains no additional user or additional group entries, the
permissions in the group entry for the object owning group and in the class entry
must be the same. This behavior is the same as the current mechanism since the
file permission bits can only specify at most three different permissions.

Documentation Requirements

The ACL mechanism and its proper use must be fully described in the Trusted
Facility Manual and manual pages must be created for the Security Features
User's Guide and Security Features Programmer's Guide for all new commands
and functions.

Commands and Functions

setacl Command

DESCRIPION: The setacl command will support the changing of discretionary

permission information associated with a file. It will allow the file owner or a
process with appropriate permission or appropriate privilege to perform the
following functions:

1. replace an entire ACL, including the default ACL entries on a directory,
2. add, change, or delete an ACL or default ACL entry or entries.

This command gives the user an interface to a pure ACL mechanism, allowing a
finer granularity for file access.

Note that this command only supports the file system objects: e.g., regular files,
special files, directories, and named pipes. For simplicity, these objects are
referred to as "files".

SYNOPSIS:

setacl [-r] [-rn (u[ser]::operm Jperm[,]]

[rn[ser]:uid:operm perm[,...]]
[g[roup]::operm perm[9]]
[g[roup]:gid:operm perm[,...]]
[c[lass]:operm perm[,]]
[o[ther]:operm perm[,]]
[d[efault]:u[ser]::operm perm]
[d[efault]:u[ser]:uid:operm perm[....]]
[d[efault]:g[roup]::operm perm]
[d[efault]:g[roup]:gid:operm perm[....]]
[d[efault]:c[lass]:operm perm]
[d[efault]:o[ther]:operm perm]
· d [u[ser]:uid[,...]][g[roup]:gid[,...]] [d [efault]:u[ser]:[,...]]

[d[efault]:u[ser]:uid[,...]] [d[efault]:g[roup]:[,...]]
[d[efault]:g[roup]:gid[,...]] [d[efault]:c[lass]:[,...]]
[d[efault]:o[ther]:[,...]]]

file

or

setacl [-r] -s u[ser]::operm perm[,]

[u[ser]:uid:operm perm[,...]]
g[roup]::operm perm[,]
[g[roup]:gid:operm perm[,...]]
c [lass]:operm perm [,]
o[ther]:operm perm[,]
[d[efault]:u[ser]::operm perm]
[dl[ef&Wt]:u[ser]:uid:operm perm[,...]]
[d[efault]:g[roup]::operm perm]
[d[efault]:g[roup]:gid:operm perm[,...]]
[d[efault]:c[lass]:operm perm]
[d[efault]:o[ther]:operm perm]

file...

or

setacl [-r] -f acljile file

where:

operm = octal representation of permissions

(Note: for an ACL entry one octal digit is required)

perm = a permissions string composed of the

characters r (read). w (write), x (execute/search), or - (no permission). The
permission string must be at least 1 character and no more than 3 characters.
The characters r. w, and x may only be in the string at most once. The characters
may be in any order within the string.

uid = user identity (i.e., login name or user ID) gid = group identity (i.e., group
name or group ID)

When the -f option is specified, it will take the access control information stored in
the file acljile and assign it to the file file. See the PROCESSING section below
for further information on the format of the file acljile.

PROCESSING: A unique ACL will exist for each file on the system. There are
four

types of ACL entries, consisting of user, group, class, and other. The user entry
for the file owner, the group entry for the file owning group, the class entry for the
file group class, and the entry for other must always be in the ACL.

1. user entry - This type of entry contains a user ID and the associated
permissions that will be granted to the user. There must always exist one entry
of this type, which will represent the file owner, and will be denoted by a null
(unspecified) user ID. There may be additional user entries specified; however
each entry must specify a unique user ID and there may not be any additional
entries with a null user ID. If there is a user entry with a user ID equal to the file
owner the file owner entry will take precedence when an access check is
performed.
2. group entry - This type of entry contains a group ID and the associated
permissions that will be granted to the group. There must always exist one
entry of this type, which will represent the file owning group, and will be
denoted by a null (unspecified) group ID. There may be additional group
entries specified; however, each entry must have a unique group ID and there
may not be any additional entries with a null group ID.
3. class entry - This type of entry contains the maximum permissions for the file
group class. There is exactly one of these entries in an ACL.
4. other entry - This type of entry contains the permissions granted to a subject
if none of the above entries have been matched. There is exactly one of these
entries in an ACL.

When the setacl command is used to change the ACL. it may result in changes
to the file permission bits. Specifically. when the user ACL entry for the file owner
is modified the file owner class permission bits will be modified. When the class
ACL entry is modified, the file group class permission bits will be modified. When
the other ACL entry is modified the file other class permission bits will be
modified.

When the additional user entries or additional group entries of the ACL are
modified, the file group class permission bits may also need to be modified to
reflect the maximum permission allowed by these entries.

The -r, recalculate, option will result in the permissions specified in the class
entry being ignored and replaced by the maximum permission needed for the file
group class. For example, if there are no additional user entries or additional
group entries, the permission of the group entry for the file owning group is used
for the class entry.

A directory may contain default ACL entries. These entries may be of the type
default:user. default:group, default:class, or default:other. For default:user
entries, if no user ID is specified, this entry will apply to the file owner
permissions. Additional default:user entries must have a unique user ID
specified. For default:group entries, if no group ID is specified, this entry will
apply to the file owning group permissions. Additional default:group entries must
have a unique group ID specified. If there are no additional default:user entries or
additional default:group entries, then the permissions of the default group and the
default class must be the same.

If a file is created in a directory which contains default ACL entries the entries will
be added to the newly created file. Note that the default permissions specified for
the file owner class, file group class, and file other class will be constrained by
the umask and the mode(specified in the file creation call. If default ACL entries
are specified for a file which is not a directory the command will fail (11), see
ERRORS AND RETURNS.

With no options and arguments (1), see ERRORS AND RETURNS. If the MAC
or DAC check fails when a request is made to modify the ACL (2), see ERRORS
AND RETURNS. If the file named file does not exist (6), see ERRORS AND
RETURNS.

If options are specified, the validity of the option-arguments will be checked. If an
invalid option is specified (3a), see ERRORS AND RETURNS. The arguments
must be processed in the order specified (e.g., if the modify option is specified
with a user, followed by the delete option with ihe same user, the entry will be
deleted).

For the -m. -s, and -d options, if uid is not a valid login name or a valid user ID
(3b), or if gid is not a valid group name or a valid group ID (3c), or if a specified
perrn is not r. w. x, -, or a specified operm is not an octal digit (3d), see ERRORS
AND RETURNS.

The -m option is used to add a new ACL entry or change an existing ACL entry.

If an entry already exists for the specified uid or gid. the specified permissions
(perm operm) will replace the current permissions. If an entry does not exist for
the specified uid or gid, an entry will be created. Note that an entry with no
permissions will result in the specified uid or gid being denied access (any
permissions) to the file. To specify no access in an entry being modified or
added, either 0 should be specified for operm or - should be specified for perm.

The -s option is used to replace the ACL information on a file. The effect of using
this option is that all entries are removed, and replaced by the newly specified
ACL. If -s is specified with -d, -f, or -m (ST, see ERRORS AND RETURNS. There
must be exactly one user entry specified for the file owner, exactly one group
entry specified for the file owning group, exactly one class entry specified for the
file group class, and exactly one other entry specified. If there is no user entry
specified for the file owner. or no group entry specified for the file owning group9
or no class entry specified for the file group class, or no other entry specified (8),
see ERRORS AND RETURNS. There may be additional user ACL entries and
additional group ACL entries specified. If duplicate entries are specified (9), see
ERRORS AND RETURNS.

The -d option is used to delete an existing entry from the ACL. If a matching entry
is not found (4a), see ERRORS AND RETURNS. Othdrwise, the matching entry
will be deleted. The user entry for the file owner, the group entry for the file
owning group, the class entry, and the other entry may not be deleted from the
ACL. If an attempt is made to delete one of these entries (4b), see ERRORS
AND RETURNS.

(Note: deleting an entry may have different effects than removing all the specified
permissions for an entry. If an entry is deleted and a search is later done for the
user or group identity that appeared in the entry, this identity might match
another entry and then be given the permissions specified in this other entry. If
the original entry remained with no permissions and a search was done for this
identity. the search might match this entry and the subject would be denied
access.)

The -f option is used to assign the ACL information contained in the file named
acljile to the specified file(s). If -f is specified with -d. -s. or -m (5), see ERRORS
AND RETURNS. If the file named acljile does not exist (6), see ERRORS AND
RETURNS. The file named acljile must be readable by the invoking subject. If it
is not readable (2), see ERRORS AND RETURNS. If the entire file named aclJile

contains correct external representation(s) for ACL entries, the ACL for the
specified file(s) will be (removed and) replaced with the ACL whose external
representation is contained in the file named acljile. Each external representation
of an ACL entry, contained in the file named acljile, must be on a separate line
and must be in the following format:

u[ser]::operm perm
[u[ser]:uid:operm perm]
g[roup]::operm perm
[g[roup]:gid:operm perm]
c[lass]:operm perm
o[ther]:operm perm
[d[efault]:u[ser]::operm perm]
[d[efault]:u[ser]:uid:operm perm[,...]]
[d[efault]:g[roup]::operm perm]
[d[efault]:g[roup]:gid:operm perm[,...]]
[d[efarnlt]:c[lass]:operm perm]
[d[efault]:o[ther]:operm perm]

The entries are not required to be in any specific order within the file. There must
be exactly one user entry specified for the file owner, exactly one group entry
specified for the file owning group, exactly one class entry specified for the file
group class, and exactly one other entry specified. If not, see ERRORS AND
RETURNS. There may be additional user ACL entries and additional group ACL
entries specified. If duplicate entries are specified (9), see ERRORS AND
RETURNS.` Validity checks are performed on all entries. If an invalid entry
isencountered (7); see ERRORS AND RETURNS. If the exact problem can
bedetermined an additional message may be displayed (3b)(3c)(3d), see
ERRORS

AND RETURNS.

The character "#" will be used to indicate a comment. All characters starting with
the #. to the end of the line will be ignored. Note that this includes any effective
permissions (#effective:rwx) displayed by getacl. This command may be
executed on a file system that does not support ACLs. If ACL entries are
specified which do not map into the base permissions (10), see ERRORS AND
RETURNS, otherwise the base permissions will be set.

ERRORS AND RETURNS: Following is a list of error conditions and the

corresponding error message that should be output when this condition occurs.

usage: setacl [-r] [-m [rn(ser]::operm perm[.]]

[rn[ser]:uid:operm perm[,...J]
[g[roup]::operm perm[9]]

[g(roup]:gid:operm perm[....]]
[c[Iass]:operm perm[·]]
[o[ther]:operm perm[,]]
[d(efault]:u[ser]::operm perm]
(d(efarnlt]:u[ser]:uid:operm perm(9...]]
[d[efault]:g[roup]::operm perm]
[d[efault]:g[roup]:gid:operm perm[,...]]
[d[efault]:c[lass]:operm perm]
[d[efault]:o[ther]:operm perm]
· d [rn[ser]:uid(,...]][g[roup]:gid(,...]] [d [e£ault]:u(ser]:] fd [efault]:u[ser]:uid[,...]]
[d[efault]:g[roupj:[,...]]
[d[efault]:g(roup]:gid] [d[efarnlt]:o[ther]:]]

file...

or

setacl [-r] -s rn(ser]::operm perm[,]

[rn[ser']:uid:operm perm[,...]]
g[roup]::operm perm(.]
[g[roup]:gid:operm perm[,...]]
c[lass]:operm perm[,]
o[ther]:operm perm[,]
[d[efault]:u[ser]::operm perm]
[d[efault]:u[ser]:uid:operm perm[9...]]
[d[efault]:g[roup]::operm perm]
[d[efault]:g[roup]:gid:operm perm[....]]
[d[efault]:c[lass]:operm perm]
[d[efault]:o[ther]:operm \perm]

file

or

setacl [-r] -f acljile file

(1) No options or arguments:

UX:setacl: ERROR: incorrect usage
usage:...

(2) If MAC or DAC check fails on the specified file:

UX:setacl: ERROR: permission denied for `jilename"

(3) invalid option-arguments:

(a) incorrect/unknown option specified:
UX:setacl: ERROR: illegal option-"-option"

usage:
(b) invalid user ID:

UX:setacl: ERROR: unknown user-id "uid"

(c) invalid group ID:
UX:setacl: ERROR: unknown group-id "gid" (dJ invalid permission:

UX:setacl: ERROR: unknown permission "permission"

usage:...

(4) invalid attempt to delete an ACL entry:

(a) attempt to delete a non-existent entry from an ACL:
UX:setacl: ERROR: matching entry not found in ACL
(b) attempt to delete file owner, file owning group. class. or other
ACL entries:
UX:setacl: ERROR: file owner, file group, "class". and "other" entries
may not be deleted

(5) the options specified are mutually exclusive:

UX:setacl: ERROR: incompatible options specified

usage:

(6) filename does not exist:

UX:setacl: ERROR: file `jile,name" not found

(7) an invalid ACL entry encountered in the file acljile:

UX:setacl: ERROR: "acljile", line line; invalid ACL entr y

(8) required entry for file owner, file owning group, class, or other missing:

UX:setacl: ERROR: required entry for file owner, file group, "class", or "other" not
specified usage:

(9) duplicate ACL entries specified:

UX:setacl: ERROR: duplicate entries: "acl,entry"

(10) the file system does not have ACLs, and additional entries are specified:

UX:setacl: ERROR: only file owner, file group, "class" or "other"

entries may be specified

(11) the specified file is not a directory, and default e('ntries have been specified:

UX:setacl: ERROR: default ACL entries may only be set on directories

OUTPIIT: None

getacl Command

DEsCRII'TION: The getacl command will support (he displaying of discretionary

information associated with a file. It will allow the file owner or a process with
appropriate permission or appropriate privilege to perform the following functions:

1. display the owner, group, and ACL for the specified file(s),
2. display the default ACL for a directory.

Note that this command only supports the file system objects: e.g., regular files,
special files, directories. and named pipes. For simplicity, these objects are
referred to as "files".

SYNOPSIS:

getacl [-ad] file

PROCESSING: With no arguments (1), see ERRORS AND RETURNS. If MAC
or

DAC check fails when a request is made to display the ACL information (2), see
ERRORS AND RETU'RNS. With invalid options (3), see ERRORS AND
RETURNS. If the file named file does not exist (4), see ERRORS AND
REtuRNS.

With the -a option specified, the filename, owner, group, and the ACL of the file
will be displayed. With the -d option specified, the filename, owner, group, and
the default ACL of the file will be displayed, if it exists. If the specified file does
not support default ACLs (e.g., it is not a directory) only the filename, owner, and
group will be displayed. With no option specified, both the ACL and the default
ACL (if it exists) of the file will be displayed. This command may be executed on
a file system that does not support ACLs.

It will report the ACL based on the base permission bits.

ERRORS AND RETURNS: Following is a list of error conditions and the

corresponding error message that should be output when [his condition occurs.

usage: getacl [-ad] file

(1) No arguments:

UX:getacl: ERROR: incorrect usage
usage:...

(2) If MAC or DAC check fails when a request is made to display the ACL information:

UX:getacl: ERROR: permission denied for `file" - (3) incorrect/unknown option
specified:

UX:getacl: ERROR: illegal option-"-optio,t"
usage:...

(4) file does not exist:

UX:setacl: ERROR: file `file" not found

OUTPUT: When an ACL is displayed, the external representation of the ACL will

be as follows:
file: filename
owner: uid
group: gid
user::perm
inser:uid:perm
group::perm
group:gid:perm
class:perm
other:perm
default :user: :perm
default :user:uid:perm
defai,lt :group: :perm
default :group :gid :perm
default :class :perm
default :other :perm

The ACL entries will be displayed in the order listed above (the user entry for the
file owner, followed by zero or more additional user entries, followed by the group
entry [or the file owning group, followed by zero or more additional group entries,
followed by the class entry for the file group class, followed by the entry for
other). When the specified file is a directory the entries described above may be
followed by default entries (the default user entry for the file owner, followed by
zero or more additional d~efault:user entries, followed by the default:group entry
for the file owning group, followed by zero or more additional defarnlt:group
entries, followed by the default:class entry for the file group class, followed by the
entry for default:other). Note that these default ACL entries are never used in an

access check. If more than one file is specified, a blank line will be displayed
before the ACL of the next file is displayed.

The first line displays the name of the file, next the file owner, and then the file
owning group. The user entry without a user ID indicates the permissions -that
will be granted to the owner of the file. The additional user entries indicate the
permissions that will be granted to the specified user. The group entry without a
group indicates the permissions that will be granted to the group of the file. The
additional group entries indicate the permissions that will be granted to the
specified group. The class entry indicates the permissions that will be granted to
the file group class. The other entry indicates the permissions that will be granted
to others.

The default entries (default user, default group, default:class, and default:other)
may only exist for directories, and indicate the default user, group, class, and
other entries respectively that will be merged with the ACL for a new file created
within the directory.

The uid is a login name, or a user ID (only if there is no login name associated
with the user ID); gid is a group name. or a group ID (only if there is no group
name associated with the group ID); and perm is a three character string
composed of the letters representing the separate discretionary access controls,
r (read). w (write), x (execute/search), or the character -. The perm will be
displayed in the following order: rwx. If a permission is not granted by this ACL
entry. the placeholder. "-", will appear. For example. if the user does not have
write permission. but does have read and execute permission, r-x will be output.

The file group class permission bits constrain the ACL (represent the most
access that any entry in the ACL may have). If a user executes the chmod
command and changes the file group class permission bits this may change the
permissions that would be granted based on the ACL alone. This behavior is
necessary for the save-restore model (all permissions are temporarily removed
via chmod 000 file and then restored) to work correctly. In order to indicate that
the file permission bits are more restrictive than an ACL entry, getacl will display
the ACL entry as described above with an additional tab followed by a sharp sign
and the effective permissions.

Note that output from getacl will be in the correct format for input to setacl.
Therefore, if the output is redirected into a file (e.g., getacl junk > entries), this file
can be used as input to setacl (e.g., setacl -f entries junk.new). In this way, a
user can easily assign one file's ACL information to another file.

EXAMPLES:

1) File with several ACL entries:

#file:fred

#owner:craig
group: demo
user::rwx
user:spy:---
user:larry:rw-
group::r-
class:rw-
other:---

2) Same file. after a "chmod 700 fred":

#file:fred
$ owner: craig
$ group: demo
user::rwx
user:spy:---

user:larry:rw- #effective:---

group::r-- $effective:---

class:---
other:---

3) Directory with ACL entries including default ACL entries:

$ file: foodir
$ owner: craig
$ group: demo
user::rwx
user:spy:---
user:larry:rwx
group::r-x
class:rwx
other:r-
default:user::rwx
default user :larry :rwx
default:rnser:worm:- --
default :group:demo:r -
default:other:---

A.23 4

DESCRIPTION: The act call will support the getting and setting of discretionary

· permission information associated with a file. It will allow the file owner or a
process with appropriate permission or appropriate privilege to perform the

following functions:
1. get or set a file's ACL information in an atomic operation.
2. return the number of entries contained in an file's ACL.

Note that this call only supports the file system objects: e.g., regular files, special
files, directories, and named pipes. For simplicity, these objects are referred to as
"files".

SYNOPSIS:

#include <tbd.h>

int acl(const char *path, int cmd. int nentries, struct acl "aclbufp)

Three values for cmd will be supported: ACLSET, ACLGET, and ACL_CNT. The
value of nentries is the number of ACL entries that can fit in the user-supplied
ACL buffer for an ACL_GET or the number actually present for an ACL_SET;
and aclbufp is a pointer to the user-supplied buffer of ACL entry structures. The
buffer will consist of an array of four (USEROBJ, GROUPOBJ, CLASSOBJ, and
OTHEROBJ entries are required) or more occurrences of the following structure:

struct acl [
intatype;
uidt aid;
ushort a_perm;

Twelve values of arype will be supported to specify the type of entry: (six for
access checking and six for defaults), USEROBJ, USER, GROUPOBJ, GROUP,
CLASSoBJ, OTHERoBJ, DEF_USER_OBJ, DEF&SER, DEFGROUPoBJ,
DEFGROUP, DEFCLASSoBJ, and DEFoTHERoBJ. When arype is USER or
DEF,USER, aid will be a user id, and when atype is GROUP or DEFGROUP, aid
will be a group id. When atype is USERoBJ, GROUPoBJ, CLASSoBJ,
OTHER_OBJ, DEF_USERoBJ, DEFGROUPoB,l, DEFCLASSoBJ, or
DEF_OTHER_OBJ, aid will not be used. The permissions for the entry will be
contained in a~erm.

· 56 -

PROCESSING: When the specified cmd is ACL,CNT, the return value from the
call

will be the number of ACL entries for the filename pointed to by path. The values
of nentries and ac'bitfp will be ignored. ff the user does not pass the DAC and
MAC checks to see the ACL. the act call will fail (see ERRORS AND RETURNS).

When the specified cmd is ACL_GET. the ACL information for the filename
pointed to by path will be retrieved and the ACL entries will be placed in the
buffer pointed to by actbttjp. The value of nentries is the number of entries that
can be held in the allocated buffer. If the number of ACL entries in the ACL is
greater than the value of ttentries (that is. the buffer space allocated to hold the
files ACL entries is less than nentries times the size of an entry), the acl call will
fail (see ERRORS AND RETURNS). On success. the return value from this call
will be the number of ACL entries retrieved. On any error. the contents of the acl
structures pointed to by actbufp are indeterminate. If the user does not pass the
DAC and MAC checks to see the ACL, the act call will fail (see ERRORS AND
RETURNS).

When the specified cmd is ACL_SET, ACL entries currently in the buffer pointed
to by actbufp, for the filename pointed to by path, will be set if all required checks
are passed. The contents of nentries shall be the number of ACL entries in the
buffer, pointed to by aclbufp, to be copied. On success. the return value from this
call will be 0. If the invoking user does not pass the DAC and MAC checks to set
an ACL, the act call will fail (see ERRORS AND RETURNS). If an error occurs,
either due to DAC and MAC checks or the validation check listed below. there
will be no change to the current ACL information. Before the ACL entries are
actually set, validation checks will be performed to determine that the ACL
entries are in the following order:

a) a user entry for the file owner (USEROBJ),
b) additional user entries (USER),
c) a group entry for the file owning group (GROUPOBJ),
d) additional group entries (GROUP),
e) a class entry for the file group class (CLASSOBJ),
f) an entry for other (OTHEROBJ),
g) default user entry for the file owner (DEFLySEROBJ),
h) default additional user entries (DEFLSER),
i) default group entry for the file owning group (DEF,GROUPOBJ),
j) default additional group entries (DEFGROUP),
k) default class entry for file group class (DEFCLASSOIBJ).
l) default entry for other (DEFOTHEROBJ),

The entry in classes a), c), e), and f) must always exist. The entry for classes a),
c)9 e), f), g), i), k), and l) do not use the aid field. Classes b) and h) may contain
zero or more entries and the entries must be sorted by uid (lowest to highest).
Classes d) and j) may contain zero or more entries and the entries must be
sorted by gid (lowest to highest). (this ordering should be done with the aclsort
function).

Class g). h), i), j), k) and l) entries are only applicable for directories. If an attempt
is made to set default ACL entries on a file that is not a directory, the call will fail
(see ERRORS AND RETURNS).

Validation of the ACL will be performed. If entries containing duplicate uids or
gids are found, or there is not exactly one user entry specified for the file owner,
one group entry specified for the file owning group. one class entry specified for
the file group class, and one other entry specified, or there are no additional user
and group entries and the permissions of the class entry are not equal to the
permissions of the group entry, or there are no additional default:user and
default:group entries and the permissions of the default:class entry is not equal to
the permissions of the default:group entry, the call will fail (see ERRORS AND
RETURNS).

The file owner class permission bits will be changed, such that they are equal to
the permissions specified for the user entry of the file owner in the ACL. The file
group class permission bits will be changed, such that they are equal to the
permissions specified for the class ACL entry. The file other class permission bits
will be changed, such that they are equal to the permissions specified for the
other ACL entry.

This function may be executed on a file system that d~s not support ACLs. With
ACLGET as the cmd it will report the ACL& based on the file permission bits.
With ACLSET as the cmd, if ACL entries are specified which do not map into the
file permission bits, see ERRORS AND RETURNS, otherwise the file permission
bits will be set.

A design may constrain the maximum number of ACL entries that are

written, with a system-wide tunable parameter, aclmax. If the number of

ACL entries exceeds the value of aclmax the function will fail (see ERRORS AND
RETURNS).

ERRORS Ah·D RETURNS: If the act call is unsuccessful, a value of -I will be

returned and errno will be set to indicate the error. Only implementation-
independent errnos are presented.

Under the following conditions, the function act will fail and will set errno to the
specified value (note: unless otherwise stated. the errno applies to ACLCNT,
ACLGET, and ACLSET):

ENOTDIR if a component of the path prefix is not a directory

ENOTDIR if an attempt is made to set a default ACL on a file type

other than a directory

ENOENT if a component of the pathname should exist but does not

EACCES if the DAC and/or MAC check fails

EINVAL if cmd is not ACLCNT, ACLGET, or ACLSET

EINVAL if cmd is ACLSET and the ACL entries do not pass the

validation check

ENOSPC if cmd is ACLGET and the space required for the

file's ACL entries exceeds nentries

ENOSPC if cmd is ACL,SET and there is insufficient space

in the file system to store the ACL

EINVAL if the number of acl entries exceeds the value of aclmax

ENOSYS if the file system type does not support ACLs, and

additional entries are specified

aclsort Function

DESCRIPTION: The aclsort function will take as input a buffer containing ACL

entries (including default ACL entries) and sort them into the correct order to be
accepted by the act or the aclipc function. It will optionally calculate the maximum
permissions needed for the object group class and set the class ACL entry.

SYNOPSIS:

$include <tbd.h> int aclsort(int nentries, int calclass, struct acl *aclbufp) Where
the value of nentries is the number of ACL entries, the value of calclass if non-
zero indicates to recalculate the class entry, and aclbufp is a pointer to ACL entry
structures.

PROCESSING: A call to aclsort will result in the contents of the buffer being
sorted

in the following order:

a) a user entry for the object owner,
b) additional user entries.
c) a group entry for the object owning group,
d) additional group entries,

e) a class entry for the file group class,
f) an entry for other,
g) default user entry for the object owner.
h) default additional user entries,
i) default group entry for the object owning group.
j) default additional group entries,
k) default class entry for the file group class,
l) default entry for other.

Classes a), c), e), and f) must each have exactly one entry, if not, see ERRORS
AND RETURNS. Classes g), i), k), and l) must have zero or one entry, if not, see
ERRORS AND RETURNS. Entries will be sorted in increasing order, by user ID
in classes b) and h), and by group ID in classes d) and j). Following sorting, a
check will be performed to verify that no duplicate entries (more than one entry
containing the same user ID or the same group ID) exist. If duplicate entries are
found, see ERRORS AND RETURNS. If there are no entries in classes b) and
d). the function will set the permission field, a~er'n. in the class entry e) to that of
the group entry c). If there are entries in classes b) or d) and the calclass
argument is non-zero, the function will set the permission field, a~erm, of the
class entry to the maximum permission of the entries in the file group class.
Otherwise, the class entry permissions will remain unchanged.

If there are no entries in classes h) and j), the function will set the permissions in
the default class entry k) to that of the default entry i). Upon success. aclsort will
return the value 0.

ERRORS AND RETURhS: If the aclsort function is unsuccessful due to duplicate

entries, the return value will be the position (entry number) of the first duplicate
entry. If there is less than one user entry for the object owner, group entry for the
object owning group, class entry for the file group class. or other entry specified,
a value of -1 will be returned. If there is more than one user entry for the object
owner. group entry for the object owning group, class entry for the file group
class. or other entry specified, they will be treated as duplicate entries, and the
return value will be the position of the duplicate entry.

If the aclsort function is unsuccessful for any other reason, a value of -1 will be
returned.

chmod Function

DESCRIPTION: The chmod function supports the following functionality:

1. it allows a subject to change the file mode. including the permissions for the
file owner class. the file group class, and the file other class of a file. Note that
the chmod command will not require any modifications.

SYNOPSIS: No change.

PROCESSING: Any permissions changes made with the chmod command or
function

will update the file permission bits. This includes changing the file owner ACL
entry. the class ACL entry, and the other ACL entry if the corresponding group(s)
of bits are changed by this call. Any additional ACL entries will not be affected.
Note. the permissions granted by such additional entries are constrained by the
file group class permission bits. If no additional user and no additional group
entries exist, the file group class permission bits will also represent the
permissions for the owning group of the file.

ERRORS AND RETURNS: No change.

OUTPUT: No change.

chown Function

DESCRIPTION: The choivn function supports the following functionality:

1. it allows a subject to change the owner and/or group of a file.

Note that the chotin system call/command and the chgrp command will not
require any modifications.

SYNOPSIS: No change.

PROCESSING: When the owner of a file is changed, the result will be identical to

the current behavior. If the owner is changed to a user ID. for which an additional
user entry already exists in the ACL, the additional user entry is not changed but
the user entry for the file owner will take precedence during an access check.
When the group of a file is changed. the result will be identical to the current
behavior. lithe group is changed to a group ID, for which an additional group
entry already exists in the ACL, the additional group entry is not changed but the
group entry for the file owning group will take precedence during an access
check (except in the case of multiple concurrent groups, where all group entries
are given equal treatment).

ERRORS AND RETURNS: No change.

OUTPUT: No change.

EXAMPLES: The following examples illustrate the operation of the cho \L'n
function.

For each example, there is a "before" state showing the output of getacl, the
chown function that is executed, and the "after" state output.

EXAMPLE 1:
BEFORE:
$ file: filel
$ owner: larry
$ group: guest
user::rwx
group::r-
class:r- -
other:---
CALL: chown(filel, lisa, demo)
AFTER:
$file:filel
$ owner: lisa
$ group: demo
user::rwx
group::r-
class:r-
other:---
EXAMPLE 2:
BEFORE:
$ file: file2
$ owner: tarry
$ group: guest
user::rwx
user:fred:r-
group::r-
group:dev:r-
class:r-
other:- -

CALL: chown(file2. lisa demo)

AFTER:
$ file: file2
$ owner: lisa
$ group: demo
user::rwx
user:fred:r- -
group::r-
group:dev:r-
class:r-
other:---
EXAMPLE 3:

BEFORE:
$ file: file3
$ owner: larry
$ group: guest
user::rwx
user:lisa:r-
user:fred:r-
group::r-
group:dev:r-
group:demo:r-
class:r-
other:-- -
CALL: chown(file3. lisa, demo)
AFTER:
$ file: file3
$ owner: lisa
$ group: demo
user::rwx
user:lisa:r-
user:fred:r-
group::r-
group:dev:r-
group:demo:r-
class:r-
other:---

Note in EXAMPLE 3, a user entry contains a user ID that is the same as the file
owner. In this case the file owner entry takes precedence. Also in EXAMPLE 3, a
group entry contains a group ID that is the same as the owning group of the file.
If multiple concurrent groups are not being used, the object owning group entry
takes precedence.

aclipc Function

DESCRIPTION: The actipc call will support the getting and setting of
discretionary

`permission information associated with an IPC o6ject. It will allow the object
owner or a process with appropriate permission or appropriate privilege to
perform the following functions:

1. get or set an IPC object's ACL information in an atomic operation.
2. return the number of entries contained in an IPC object's ACL.

Note that this call only supports the IPC objects: e.g., shared memory segments.
semaphores. and message queues. For simplicity, these objects are referred to
as "IPC objects" in the remainder of this description.

SYNOPSIS:

#include <tbd.h> int aclipc(int type, int id, int cmd, int nentries, struct acl *aclbufp)
Three values for type will be supported: IPCSHM, IPCSEM, and IPCMSG. If type
is IPC_$HM, id must be a valid shmid returned by shmget. If type is IPC,SEM. id
must be a valid semid returned by semget. If type is IPC,MSG, id must be a valid
msgid returned by msgget. Three values for cmd will be supported: ACLSET.
ACLGET, and ACL_CNT. The value of nentries is the number of ACL entries that
can fit in the user-supplied ACL buffer for an ACLGET or the number actually
present for an ACLSET; and aclbufp is a pointer to the user-supplied buffer of
ACL entry structures. The buffer will consist of an array of four (USEROBJ,
GROUPOBJ, CLASSOBJ, and OTHEROBJ entries are required) or more
occurrences of the following structure:

struct acl (
intatype;
uidt aid;
ushort aperm;

Six values of ajype will be supported to specify the type of entry:

USERoBJ, USER, GROUPOBJ, GROUP, CLASSOBJ, and OTHEROBJ. When
ajype is USER, aid will be a user id, and when ajype is GROUP, aid will be a
group id. When ajype is USEROBJ, GROUPOBJ, CLASSOBJ, or OTHEROBJ,
aid will not be used. The permissions for the entry will be contained in ajerm.

PROCESSING: When the specified cmd is ACLCNT, the return value from the
call

will be the number of ACL entries for the IPC object specified by type and id. The
values of net!tries and aclbufp will be ignored. If the invoking user does not pass
the DAC or MAC checks to see the ACL. the aclipc call will fail (see ERRORS
AND RETURNS).

When the specified cmd is ACLGET the ACL information for the IPC object
specified by type and id will be retrieved and the ACL entries will be placed in the
buffer pointed to by aclbufp. The value of i;entries is the number of entries that
can be held in the buffer. If the number of ACL entries in the ACL is greater than
the value of nentries (the buffer space allocated to hold the file's ACL entries is
less than nentries times the size of an entry), the aclipc call will fail (see
ERRORS AND RETURNS). On success. the return value from this call will be
the number of ACL entries retrieved. On any error, the contents of the acl

structures pointed to by aclbiifp are indeterminate. If the user does not pass the
DAC and MAC checks to see the ACL, the aclipc call will fail (see ERRORS AND
RETURNS).

When the specified cmd is ACLSET, ACL entries currently in the buffer, pointed
to by aclbufp, for the IPC object specified by type and id, will be set if all required
checks are passed. The contents of nentries shall be the number of ACL entries
in the buffer pointed to by aclbufp to be copied. On success, the return value
from this call will be 0. If the invoking subject does not pass the DAC and MAC
checks to set an ACL the aclipc call will fail (see ERRORS AND RETURNS). If
an error occurs, either due to DAC or MAC checks or the validation check listed
below, there will be no change to the current ACL information. Before the ACL
entries are actually set, validation checks will be performed to determine that the
ACL entries are in the following order:

a) a user entry for the IPC object owner (USEROBJ),
b) additional user entries (USER),
c) a group entry for the IPC object owning group (GR,OUPOBJ),
d) additional group entries (GROUP),
e) a class entry for the IPC group class (CLASSOBJ),
f) an entry for other (OTHEROBJ).
The entries in class a), c), e), and f) must always exist. The entry for class a),

c), e), and f) do not use the aid field. Class b) may contain zero or more entries
and the entries must be sorted by uld (lowest to highest). Class d) may contain
zero or more entries and the entries must be sorted by gid (lowest to - highest).
(this ordering should be done with the aclsort function). Validation of the ACL will
be performed. If entries containing duplicate ttids or gids are found. or there is
not exactly; one user entry for the object owner. one group entry for the object
owning group. one class entry for the IPC group class, or one other entry
specified. or there are no additional user and group entries and the permissions
of the class entry are not equal to the permissions of the group entry, the call will
fail (see ERRORS AND RETL'RNS). The IPC owner permission bits will be
changed, such that they a re equal to the permissions specified for the user entry
of the object owner in the ACL. The IPC group class permission bits will be
changed, such that they are equal to the permissions specified for the class ACL
entry. The IPC other class permission bits will be changed, such that they are
equal to the permissions specified for the other ACL entry.

A design may constrain the maximum number of ACL entries that are written,
with a system-wide tunable parameter, aclmax. If the number of ACL entries
exceeds the value of aclmax the function will fail (see ERRORS AND
RETURNS).

ERRORS AND RETURNS: If the aclipc call is unsuccessful, a value of -I will be

returned and errno will be set to indicate the error. Only implementation-
independent errnos are presented.

Under the following conditions, the function aclipc will fail and will set errno to the
specified value (note: if cmd is unspecified, the errno applies to ACLCNT,
ACLGET, and ACLSET):

EINVAL if type is not IPC,SHM, IPC,SEM, or IPC,MSG

EINVAL if the value of id is (1) not a valid messagequeueldentifier and

the type was IPCMSG, (2) not a valid semapho~e1dentifier and

the type was IPCSEM, or (3) not a valid sharedmemory,dentifier

and the type was IPCSHM

EINVAL if cmd is not ACLCNT, ACL_GET, or ACLSET

EINVAL if cmd is ACLSET and the ACL entries do not pass

the validation check

EACCES if the DAC and/or MAC check fails

ENOSPC if cmd is ACLGET and the space required for the

IPC's object ACL entries exceeds nentries

ENOMEM if cmd is ACL_SET and there is insufficient

space to store the ACL

EINVAL if the number of acl entries exceeds the value of aclmax

shmctl, semctl, & msgctl Functions

DESCRIPTION: The shmctl. semctl, and msgctl functions support the following

functionality:

1. they allow a subject to change the user ID. group ID, and permissions on
IPC objects.

SYNOPSIS: No change.

PROCESSING: No change.

ERRORS AND RETURNS: No change.

REFERENCES

[1] Department of Defense Trusted Computer Systems Evaluation Criteria. DoD
5200.28-STD, December 1985.

[2] National Computer Security Center, A Guide to Understanding Discretioiiary
Access Control in Trusted Systems, NCSC-TG-003 Version-I, September 1987.
[3] UNIX System Access Control List Proposal, C. Rubin, AT&T. May 15. 1988.
[4] Adding Access Control Lists To UNIX, A. Silverstein, B. McMahon. G. Nuss,
Hewlett-Packard Co.. March 12. 1988.

[5] Discretionary Access Control System Functions, D. H. Steves, IBM, March 14,
1988.

[6] P1003 .6 Security Extension Proposal: Discretionary Access Control
Semantics, W. Olin Sibert. Oxford Systems Inc., May 18. 1988.

[7] PlOO3.6 Supplementary Document: Discretionary Access Control.. Problems
in P1003.1 Draft 12 , W. Olin Sibert, Oxford Systems Inc.. May 18, 1988. [8]
P1003.6 Supplementary Document: Comments on Hewlett-Packard ACL
Proposal, W. Olin Sibert. Oxford Systems Inc., May 18,1988.

[9] Extending The UNIX Protection Model with Access Control Lists, G.
Fernandez, L. Allen, Apollo Computer Inc., June 1988.

[10] On Incorporating Access Control Lists into the UNIX Operating System S. M.
Kramer, SecureWare Inc., June 1988.

[11] Trusted UNIX Discretionary Ac~ss and Privilege Control Mechanisms, B.D.

Wilner, Infosystems Technology Inc.. June 2,1988.

(12] Access Control List Design, Hewlett Packard, October 21, 1988.

[13] Proposal for Adding Access Control Lists to POSIX, P. B. Flinn, SecureWare
Inc., July 25, 1988.

[14] Discretionary Access Control Proposal, H. L. Hall, Digital Equipment
Corporation, Oct. 1988.

[15] Portable Operating System Interface for Computer Environments IEEE Std.
1003.1-1988

